分享

利用正交分解法处理斜面上的平衡问题

 启程的男孩 2016-11-30

相距为20cm的平行金属导轨倾斜放置(见图1),导轨所在平面与水平面的夹角为,现在导轨上放一质量为330g的金属棒ab,它与导轨间动摩擦系数为,整个装置处于磁感应强度B=2T的竖直向上的匀强磁场中,导轨所接电源电动势为15V,内阻不计,滑动变阻器的阻值可按要求进行调节,其他部分电阻不计,取,为保持金属棒ab处于静止状态,求:

(1)ab中通入的最大电流强度为多少?

(2)ab中通入的最小电流强度为多少?

解析:导体棒ab在重力、静摩擦力、弹力、安培力四力作用下平衡,由图2中所示电流方向,可知导体棒所受安培力水平向右。当导体棒所受安培力较大时,导体棒所受静摩擦力沿导轨向下,当导体棒所受安培力较小时,导体棒所受静摩擦力沿导轨向上。

(1)ab中通入最大电流强度时受力分析如图2,此时最大静摩擦力沿斜面向下,建立直角坐标系,由ab平衡可知,x方向:

y方向:

由以上各式联立解得:

(2)通入最小电流时,ab受力分析如图3所示,此时静摩擦力,方向沿斜面向上,建立直角坐标系,由平衡有:

x方向:

y方向:

联立两式解得:

正交分解法是在平行四边形定则的基础上发展起来的,其目的是用代数运算来解决矢量运算。正交分解法在求解不在一条直线上的多个力的合力时显示出了较大的优越性。建立坐标系时,一般选共点力作用线的交点为坐标轴的原点,并尽可能使较多的力落在坐标轴上,这样可以减少需要分解的数目,简化运算过程。

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多