数姐有话 列一元一次方程解应用题是七年级数学教学中的一大重点,而列一元一次方程解应用题又是学生从小学升入中学后第一次接触到用代数的方法处理应用题。因此 ,认真学好这一知识,对于今后学习整个中学阶段的列方程(组)解应用题大有帮助。因此数姐将列一元一次方程解应用题的几种常见题型及其特点归纳下来,如下: (马上点标题下蓝字关注可获取更多方法,经验,数学干货!) (1)和、差、倍、分问题。 此问题中常用“多、少、大、小、几分之几”或“增加、减少、缩小”等等词语体现等量关系。审题时要抓住关键词,确定标准量与比校量,并注意每个词的细微差别。 (2)等积变形问题。 此类问题的关键在“等积”上,是等量关系的所在,必须掌握常见几何图形的面积、体积公式。“等积变形”是以形状改变而体积不变为前提。常用等量关系为: ①形状面积变了,周长没变;②原料体积=成品体积。 (3)调配问题。 从调配后的数量关系中找等量关系,常见是“和、差、倍、分”关系,要注意调配对象流动的方向和数量。这类问题要搞清人数的变化,常见题型有: ①既有调入又有调出; ②只有调入没有调出,调入部分变化,其余不变;③只有调出没有调入,调出部分变化,其余不变。 (4)行程问题。 要掌握行程中的基本关系:路程=速度×时间。 相遇问题(相向而行),这类问题的相等关系是:各人走路之和等于总路程或同时走时两人所走的时间相等为等量关系。甲走的路程+乙走的路程=全路程 追及问题(同向而行),这类问题的等量关系是:两人的路程差等于追及的路程或以追及时间为等量关系。 ① 同时不同地: 甲的时间=乙的时间 甲走的路程-乙走的路程=原来甲、乙相距的路程 ② 同地不同时: 甲的时间=乙的时间-时间差 甲的路程=乙的路程 环形跑道上的相遇和追及问题:同地反向而行的等量关系是两人走的路程和等于一圈的路程;同地同向而行的等量关系是两人所走的路程差等于一圈的路程。 船(飞机)航行问题:相对运动的合速度关系是: 顺水(风)速度=静水(无风)中速度+水(风)流速度;逆水(风)速度=静水(无风)中速度-水(风)流速度。 车上(离)桥问题: ①车上桥指车头接触桥到车尾接触桥的一段过程,所走路程为一个车长。 ②车离桥指车头离开桥到车尾离开桥的一段路程。所走的路程为一个成长 ③车过桥指车头接触桥到车尾离开桥的一段路程,所走路成为一个车长+桥长 ④车在桥上指车尾接触桥到车头离开桥的一段路程,所行路成为桥长-车长 行程问题可以采用画示意图的辅助手段来帮助理解题意,并注意两者运动时出发的时间和地点。 (5)工程问题。 其基本数量关系:工作总量=工作效率×工作时间;合做的效率=各单独做的效率的和。当工作总量未给出具体数量时,常设总工作量为“1”,分析时可采用列表或画图来帮助理解题意。 (6)溶液配制问题。 其基本数量关系是:溶液质量=溶质质量+溶剂质量;溶质质量=溶液中所含溶质的质量分数。这类问题常根据配制前后的溶质质量或溶剂质量找等量关系,分析时可采用列表的方法来帮助理解题意。 (7)利润率问题。 其数量关系是:商品的利润=商品售价-商品的进价;商品利润率=商品利润/商品进价×100%,注意打几折销售就是按原价的百分之几出售。商品售价=商品标价×折扣率 (8)银行储蓄问题。 其数量关系是:利息=本金×利率×存期;本息=本金+利息,利息税=利息×利息税率。注意利率有日利率、月利率和年利率,年利率=月利率×12=日利率×365。 (9)数字问题。 要正确区分“数”与“数字”两个概念,这类问题通常采用间接设法,常见的解题思路分析是抓住数字间或新数、原数之间的关系寻找等量关系。列方程的前提还必须正确地表示多位数的代数式,一个多位数是各位上数字与该位计数单位的积之和。 (10)年龄问题其基本数量关系: 大小两个年龄差不会变。 这类问题主要寻找的等量关系是:抓住年龄增长,一年一岁,人人平等。 (11)比例分配问题: 这类问题的一般思路为:设其中一份为x,利用已知的比,写出相应的代数式。常用等量关系:各部分之和=总量。 |
|