分享

矩阵变换:沿任意轴旋转及其推导

 imelee 2017-02-12

1. 2D中绕原点旋转

设基向量p,q和r分别是朝向+x,+y和+z方向的单位向量。

旋转角度为θ,基向量p,q绕原点旋转,得到新的基向量p`和q`


即旋转矩阵R(θ)为



2. 3d中绕坐标轴旋转

01. 绕x轴旋转,基向量q和r旋转θ,得到新的基向量q`和r`


即旋转矩阵Rx(θ)为:


02. 绕y轴旋转,基向量p和r旋转θ,得到新的基向量p`和r`


即旋转矩阵Ry(θ)为:


03. 绕z轴旋转,基向量p和q旋转θ,得到新的基向量p`和q`


即旋转矩阵Rz(θ)为:



3. 绕任意轴旋转

这里不考虑平移,所以是过原点的任意轴。

任意轴用单位向量n表示,绕n旋转θ角度的矩阵表示为R(n,θ),v`是向量v绕轴n旋转后的向量

v` = VR(n,θ)

我们的目标是用v,n和θ来表示v`,具体步骤如下:

将v分解为平行于n的分向量v||和垂直于n的分向量v⊥。v`⊥是v`垂直于n的分向量。


01.根据向量投影公式有


02.根据v||算出v⊥,w是v⊥与n叉剩的结果


03.根据w算出v`⊥


04.最后算出v`



05.现在已经得到了v`与v,n和θ的关系公式,用它来计算变换后的基向量并构造矩阵,基向量p`为


06.其余基向量类推,这里纠正上式中列向量的写法


07.合并为矩阵后:



更多内容参见:3d数学基础





    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多