共轭复数两个实部相等,虚部互为相反数的复数互为共轭复数(conjugate complex number)。(当虚部不等于0时也叫共轭虚数)复数z的共轭复数记作zˊ。 同时, 复数zˊ称为复数z的复共轭(complex conjugate)。? 根据定义,若z=a+bi(a,b∈R),则 zˊ=a-bi(a,b∈R)。共轭复数所对应的点关于实轴对称(详见附图)。两个复数:x+yi与x-yi称为共轭复数,它们的实部相等,虚部互为相反数.在复平面上.表示两个共轭复数的点关于X轴对称.而这一点正是'共轭'一词的来源.两头牛平行地拉一部犁,它们的肩膀上要共架一个横梁,这横梁就叫做'轭'.如果用Z表示X+Yi,那么在Z字上面加个'一'就表示X-Yi,或相反。 共轭复数有些有趣的性质: ︱x+yi︱=︱x-yi︱ (x+yi)*(x-yi)=x^2+y^2=︱x+yi︱^2=︱x-yi︱^2 另外还有一些四则运算性质。 |
|