分享

【统计】ISING模型(3)

 廿氏春秋 2017-03-21

热力学量


除了从图形定性地看出Ising模型的运行以外,我们还可以研究模型的热力学性质,从而考察这些宏观量在稳态条件下如何依赖于参数,并与实验结果进行比较。以下结果都是对2维Ising模型的模拟或计算结果。


平均磁矩

首先,可以定义平均磁矩这个量。如果将所有小磁针+1或-1的状态进行代数和,可以得到:

其中N为系统中所有小磁针的个数。就是系统中在给定状态条件下,总的磁矩(每个小磁针向上或者向下都是矢量)。在稳态条件下,系统满足平衡分布,那么,对所有可能的状态按照它们出现的概率进行加权平均就得到了整个系综的平均磁矩(即对所有可能的实验结果求平均):

对应的每个小磁针的平均磁矩为:

通过计算机模拟实验,也可以通过平均场近似方法解析地给出平均磁矩随参数H和T的变化情况:

注意,这张图在H=0的位置发生了断裂,这意味着系统在此参数附近存在着突变的现象。另外,当我们从H=0这个截面观察该图形,会发现,当T比较小的时候,m的值同时存在两个分支,一个大于0,一个小于0。这表明,当外界磁场消失以后,如果温度足够低低于临界数值的话,小磁针的平均方向可能朝上也可能朝下,系统出现了对称性破缺图中豁口的交汇点对应的恰恰是临界温度的位置。如果,则m始终为0,系统处于对称的状态。

进一步,我们还可以画出m在不同参数T下随参数H的变化图:

这张图更加清晰地揭示出系统发生了相变。首先,我们看到当的时候,m随H的曲线发生了断裂。也就是说当H值连续地从小于0变到大于0的时候,热力学量m从小于0不连续地变到了大于0。这种热力学函数随参数发生不连续的变化现象称为一级相变


的时候,这条m对H的曲线又连接到了一起,没有在H=0的点发生断裂。但如果我们考察m-H曲线的斜率会发现,斜率是无穷大。当热力学量随某一参数的变化连续,但是导数发散的时候,我们称该系统正在发生二级相变,也叫连续相变


为了更深入地理解m值在临界点附近的行为,我们将研究m与归一化的温度()的关系如下图:

我们看到m随归一化温度呈现出幂律规律的变化,可以用如下公式表示:

其中这个关系的幂指数模拟数值接近于8。


磁导率

除了磁矩的平均值,我们还可以计算出磁矩的涨落,我们将这个平均涨落称为磁导率,定义如下:

类似地,我们将磁导率与归一化温度曲线画在双对数坐标下得到一条直线(当H=0):

图中的黑色曲线表示的结果,开放圆圈表示的结果。这个幂律行为可以用公式:

表示,其中指数约等于7/4。


比热


按照类似的方法,我们还可以定义系综的平均能量:

能量的平均涨落就是比热:

在0外场情况下,比热在临界点附近也呈现出与归一化温度的幂律关系:


关联强度


每个小磁针都是一个随机变量,我们可以计算任意两个小磁针i,j的统计关联性,从而考察相隔任意距离的两个小磁针是否具有联系。

具体地,我们定义关联强度为:



通过模拟我们发现,相关函数仅仅与两个小磁针之间的距离r有关,并且当温度远离临界温度的时候,相关函数与距离的函数呈现指数衰减:



其中,为一常数,称为特征尺度。也就是说,任意两个磁针的统计相关性会随着它们彼此之间的距离增长而快速衰减,只要距离稍大于特征关联尺度,则关联性就会接近于0。


但是,在临界温度附近,两磁针之间的统计相关性却呈现出幂律的形式,即:



其中d为Ising模型所在空间的维度,为幂律指数。幂律衰减会比指数衰减慢很多,这也就意味着两磁针之间的关联长度会很长。假如我们仍然用指数函数来拟合相关性的衰减,即假设在临界温度的时候仍然成立,那么就可以写为:



所以,当的时候,特征尺度。也就是说,小磁针彼此发生了长程相关:局部的空间涨落会通过某种合作机制传递并影响了相隔很远的小磁针。


临界相变


通过上述的讨论,我们已经对Ising模型的提出、模拟办法以及得到的一系列模拟、计算结果进行了粗略的介绍。我们看到,Ising模型的美妙之处就在于从一个相对简单而干净的模型出发,仅通过两个自由参数H和T,就可以复制出真实铁磁物质的相变行为。尤其是当系统处于临界参数的时候,即温度,外界磁场强度H为0,系统展现出来的是二级相变连续相变)。系统一切宏观热力学量都展现出标度行为,我们将这种特殊的相变称为临界相变,而将系统所体现出来的标度(幂律)行为、长程相关等现象统称为临界现象


临界现象不仅仅是ISING模型、铁磁物质所独有的,它具有相当的普遍性。它会在很多复杂系统中体现出来,例如气-液相变过程、湍流,甚至股票市场、经济系统等。临界系统体现出的一个重要特征就是:自相似性和长关联性。让我们再来考察临界状态下的模拟图:


这是在外场H=0,温度刚好等于临界温度的时候各个小磁针构成的一个构型。从该图中,我们看到同一种颜色(即状态一致)的小磁针形成了彼此连通的团簇。这些团簇的尺寸有大有小。单独一个团簇具有一定的自相似性,它构成了一个分形。并且团簇的形态会在多个尺度重现类似的模式。假如我们将系统放大或者缩小,我们将无法分辨出不同之处,这就是无标度性这个名词的来源。

更有意思的是,当系统处于临界状态的时候,它的行为会呈现出一定的普适性。也就是说,无论系统的微观作用规则如何,系统的临界参数、各种热力学量的临界指数(如等)都相同。因此,人们将具有相同临界指数的模型类划分为普适类。拿Ising模型来说,无论Ising模型位于什么样的空间中(例如四方晶格、六角格、三角格等),它们的微观规则也可能略有不同,但是,所有这些Ising模型都属于同一个普适类,也就是说它们具有相同的临界温度和临界指数。

另外一个表现出临界行为以及临界相变的简单例子就是渗流模型


ISING模型的重正化


我们不仅要模拟Ising模型,还要求出它的临界温度,以及各个热力学量的临界指数。目前,人们已经发展了多种求解Ising模型的方法,包括:模型的解析求解、平均场近似的方法、Landau的近似方法、以及重正化群的方法等。

在这些方法中,重正化群方法与众不同,它是直接从模型达到临界后所展现出来的自相似性出发,写出重正化方程以及重正化算符。那么临界温度和各种临界指数就可以从该算符的线性化中求出。更有趣的是,由重正化群技术出发,我们自然可以得出所谓的“普适类”的概念:即存在一类Ising模型,虽然他们的微观规则很不相同,但是却具有相似的临界指数。实际上,这些模型都处于同一个普适类曲面上,即它们经过无穷多次重正化操作后都会收敛到相同的不动点。具体参见:ISING模型的重正化


    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多