分享

波粒二象性的深层含义,我们应该谨慎

 探索之子 2017-09-15

自从物理学者演示出光子与电子具有波动性质之后,对于中子、质子也完成了很多类似实验。在这些实验里,比较著名的是于1929年奥托·施特恩团队完成的氢、氦粒子束衍射实验,这实验精彩地演示出原子和分子的波动性质。

波粒二象性的深层含义,我们应该谨慎

近期,关于原子、分子的类似实验显示出,更大尺寸、更复杂的粒子也具有波动性质,这在本段落会有详细说明。

1970年代,物理学者使用中子干涉仪完成了一系列实验,这些实验强调引力与波粒二象性彼此之间的关系。]中子是组成原子核的粒子之一,它贡献出原子核的部分质量,由此,也贡献出普通物质的部分质量。在中子干涉仪里,中子就好似量子波一样,直接感受到引力的作用。因为万物都会感受到引力的作用,包括光子在内,这是已知的事实,这实验所获得的结果并不令人惊讶。但是,带质量费米子的量子波,处于引力场内,自我干涉的现象,尚未被实验证实。

1999年,维也纳大学研究团队观察到C60富勒烯的衍射。富勒烯是相当大型与沉重的物体,原子量为720 u,德布罗意波长为2.5 pm,而分子的直径为1 nm,大约400倍大。2012年,这远场衍射实验被延伸实现于酞菁分子和比它更重的衍生物,这两种分子分别是由58和114个原子组成。在这些实验里,干涉图样的形成被实时计录,敏感度达到单独分子程度。

2003年,同样维也纳研究团队演示出四苯基卟啉的波动性。这是一种延伸达2 nm、质量为614 u的生物染料。在这实验里,他们使用的是一种近场塔尔博特-劳厄干涉仪。使用这种干涉仪,他们又观察到C60F48.的干涉条纹,C60F48.是一种氟化巴基球,质量为1600 u,是由108 个原子组成。

像C70富勒烯一类的大型分子具有恰当的复杂性来显示量子干涉与量子退相干,因此,物理学者能够做实验检试物体在量子-经典界限附近的物理行为。

2011年,对于质量为6910 u的分子做实验成功展示出干涉现象。2013年,实验证实,质量超过10,000 u的分子也能发生干涉现象。

波粒二象性的深层含义,我们应该谨慎

大致而言,康普顿波长是量子效应开始变得重要时的系统长度尺寸,粒子质量越大,则康普顿波长越短。史瓦西半径是粒子变为黑洞时的其所有质量被拘束在内的圆球半径,粒子越重,史瓦西半径越大。当粒子的康普顿波长大约等于史瓦西半径时,粒子的质量大约为普朗克质量,粒子的运动行为会强烈地受到量子引力影响。

普朗克质量为2.18×10-5g,超大于所有已知基本粒子的质量;普朗克长度为1.6×10-33cm,超小于核子尺寸。从理论而言,质量大于普朗克质量的物体是否拥有德布罗意波长这个问题不很清楚;从实验而言,是无法达到的。这物体的康普顿波长会小于普朗克长度和史瓦兹半径,在这尺寸,当今物理理论可能会失效,可能需要更广义理论替代。【我认为在这个尺寸下物理理论也不会失效,下文会详细论述。】

在2015年人类获得首张图像,光同时显现波动性和粒子性。一直以来,人们从未直接观测到粒子在同一时刻表现出波和粒子的形态。

2015年3月2日,来自洛桑联邦理工学院的研究者们发表了他们的新发现。

波粒二象性的深层含义,我们应该谨慎

他们用射入奈米线的光脉冲的两个反向分量形成驻波,然后在附近注入一束电子,电子束因遭遇光驻波而被加速或减速,通过记录这些速度改变的区域,研究者们得以显现驻波的外观,而驻波体现了光的波动性。

实验在显现光的波动性的同时,也显示了其粒子性。当电子进入驻波,它们撞击光子并改变了速度。速度上的变化表明光子和电子之间能量包(量子)的交换。这种速度上的变化以及它所暗示的能量交换表明驻波中存在的粒子行为。

主持实验的Fabrizio Carbone认为,这表明量子力学的佯谬式的特质是可以被直接记录的,还认为,象这样在纳米尺度描绘并且控制量子现象,开辟了通矢量子计算的新途径。他们的突破性研究发表在Nature Communications。

爱因斯坦这样描述波粒二象性:“好像有时我们必须用一套理论,有时候又必须用另一套理论来描述(这些粒子的行为),有时候又必须两者都用。我们遇到了一类新的困难,这种困难迫使我们要借助两种互相矛盾的的观点来描述现实,两种观点单独是无法完全解释光的现象的,但是和在一起便可以。”

波粒二象性的深层含义,我们应该谨慎

现在回到开篇时候,我的提问:“你怎么看波粒二象性?”我们的介绍是一般性,普通性的知识细节,很多知识,你在网上也能找到。所以我们要有更深刻的理解。

我现在问你这样一个问题:“既然粒子具有玻璃二象性,为什么又说一些基本粒子无法再分?”

这个是细节问题,问题并不难。粒子具有波粒二象性和粒子无法再分是两个概念。粒子无法再分是从结构形态说的;粒子具有波粒二象性是从存在状态或运动状态说的。

再者波粒二象性,是指粒子具有波动和粒子的特性。德布罗意的观点我非常赞同,一切物质皆有波动,也即有波长。

即使是一个粒子也能表现出波粒二象性。这个问题上一章在不确定性原理中有讲过。电子双缝实验,也是这样显示的。

这就是量子世界烧脑的原因。其实包括不确定性原理,波粒二象性等其最根本的原因,现在还不知道。

一个很重要的问题,我早应该问大家,但一直拖到现在。那就是量子世界与宏观世界的界限在哪里?

这在哲学上可以用量变和质变的关系描述。粒子质量,大小等小到多少的时候属于粒子世界?

我们的教科书中没有提到这个问题,也没有回答这个问题。就说明这个问题不是那么容易的。

正像我处理引力与惯性的思维,我以为在量子世界也可以用这个思维去理解。

即引力与惯性谁重要?显然我的答案是引力更重要。为什么呢?因为引力是惯性的源泉。这是我在物理宇宙科普书籍《变化》中反复强调的一个点。

波粒二象性的深层含义,我们应该谨慎

引力存在,惯性才有。物质存在,引力才存在,惯性才存在。这是他们的关系。

现在就波粒二象性也这样问,粒子的性质状态波动性重要还是粒子性重要?

注意这个问题中的哪个重要,其实是人为思考的。本身客观的粒子,没有这样的区分。引力是惯性也是,其实是不可分的,一体的。之所以要这样思考,这样问,是为了大家好理解量子世界。

把复杂问题简单化的理解就是组成物质的是粒子,不是“波动性”,所以波粒二象性中“粒子性”更重要。然后是波动性。

现在来回答量子世界与宏观世界界限的问题。我们说日常生活中感觉不到房屋的波动性,水杯的波动性,这是质量大,导致德布罗意波长比可观察的极限尺寸要小很多,因此可能发生波动性质的尺寸在日常生活经验范围之外。这也是为什么经典力学能够令人满意地解释“自然现象”。反之,对于基本粒子来说,它们的质量和尺寸局限于量子力学所描述的范围之内,因而与我们所习惯的图景相差甚远。

其实上面的这个描述,就包含了宏观与量子的分别描述。上面说了在物理学里,长度与质量之间存在有两种基本关系。如下图。

波粒二象性的深层含义,我们应该谨慎

大致而言,康普顿波长是量子效应开始变得重要时的系统长度尺寸,粒子质量越大,则康普顿波长越短。

史瓦西半径是粒子变为黑洞时其所有质量被拘束在内的圆球半径,粒子越重,史瓦西半径越大。当粒子的康普顿波长大约等于史瓦西半径时,粒子的质量大约为普朗克质量,粒子的运动行为会强烈地受到引力影响。

普朗克质量为2.18×10-5g,大约是一粒灰尘的质量,这个数值大于所有已知基本粒子的质量;普朗克长度为1.6×10-33cm,经典的引力和时空开始失效、量子效应起支配作用的长度标度。它是“长度的量子”。这个数值小于核子尺寸。

从理论而言,质量大于普朗克质量的物体是否拥有德布罗意波长这个问题不很清楚;从实验而言,是无法达到的。我个人以为是存在德布罗意波长的,只是数量级很小。

【质量大于普朗克质量的物体】这物体的康普顿波长会小于普朗克长度和史瓦兹半径,在这尺寸,量子世界的物理规则会失效,经典物理规则开始显示效应。我个人认为这就是它们的界限。

我看到网上有认为在这样的尺寸下,物理理论会失效。上文中有。我这个是修正版。就是我认为不会失效。问题是哪种规则开始显示效应。

在这里我还要提醒各位一点,任何理论,任何力都不可避免引力对其的作用。无论这种影响多么小,作用肯定是存在的。那么深刻的内涵就来了,引力是什么?引力是物质时空的性质。那就是说任何理论都避免不了时空的“扰动”。

波粒二象性的深层含义,我们应该谨慎

这就是我为什么在不确定性原理中提到“时空扰动”这个词,只是这种扰动,还不能被计算。宏观世界对于量子世界的影响,就是这样的进行的。而量子世界对宏观世界的影响,也是直接的。两者其实是一体。所以大统一理论是必要的。

今天的内容,就讲到这里。下一章我们讲互补原理。因为互补原理其实和这一章的内容大同小异。在说的是一个性质状态,所以就紧接着讲,这样大家会印象更深。

摘自独立学者,诗人,作家,国学起名师灵遁者量子力学科普书籍《见微知著》

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多