分享

(原创  美国)大西洋月刊:对宇宙万物的最佳阐释

 徒步者的收藏 2017-12-27
原创翻译:龙腾网 http://www. 翻译:飞雪似炀花 转载请注明出处
论坛地址:http://www./bbs/thread-465843-1-1.html


The Best Explanation for Everything in the Universe

大西洋月刊:对宇宙万物的最佳阐释

String theory is considered the leading “theory of everything,” but there’s still no empirical evidence for it.

弦理论被认为是最重要的“万有理论”,但它还没有任何实证证据。



It’s not easy being a “theory of everything.” A TOE has the very tough job of fitting gravity into the quantum laws of nature in such a way that, on large scales, gravity looks like curves in the fabric of space-time, as Albert Einstein described in his general theory of relativity. Somehow, space-time curvature emerges as the collective effect of quantized units of gravitational energy—particles known as gravitons. But na?ve attempts to calculate how gravitons interact result in nonsensical infinities, indicating the need for a deeper understanding of gravity.

要成为一种“万有理论”并不容易。正如阿尔伯特·爱因斯坦在他的广义相对论中所描述到的,万有理论是将引力融入到自然的量子法则中去的一项异常艰难的工作,通过这种方式,在大尺度上,引力就像时空结构中的曲线一样。在某种程度上,时空曲率是作为被称作引力子的引力能量量子化单位的集体效应而出现的。但试图计算引力子之间的相互作用的天真想法却导致了毫无意义的无限,这表明我们需要对引力有更深入的理解。

String theory (or, more technically, M-theory) is often described as the leading candidate for the theory of everything in our universe. But there’s no empirical evidence for it, or for any alternative ideas about how gravity might unify with the rest of the fundamental forces. Why, then, is string/M-theory given the edge over the others?

弦理论(或者更加技术性地称之为M理论)经常被描述为我们宇宙万有理论的主要候选者。但是它还没有任何实证证据,也没有任何关于重力如何与其他基本力相统一的替代观点。那么,为什么会认为弦理论或M理论相对于其他理论拥有优势呢?

The theory famously posits that gravitons, as well as electrons, photons, and everything else, are not point particles but rather imperceptibly tiny ribbons of energy, or “strings,” that vibrate in different ways. Interest in string theory soared in the mid-1980s, when physicists realized that it gave mathematically consistent descriptions of quantized gravity. But the five known versions of string theory were all “perturbative,” meaning they broke down in some regimes. Theorists could calculate what happens when two graviton strings collide at high energies, but not when there’s a confluence of gravitons extreme enough to form a black hole.

这个理论的一个著名观点是:引力子,以及电子、光子和其他一切,都不是点粒子,而是一种不可感知的微小的能量带,或者是以不同方式振动的“弦”。上世纪80年代中期,人们对弦理论的兴趣大增,当时物理学家们意识到,它与数学上对量子化引力的描述是一致的。但是,五个已知的弦理论版本都是“摄动的”,这意味着它们在某些状态下会崩溃。理论学家可以计算当两个引力子弦在高能量状态下相撞时会发生什么,但却无法计算出当有足够多的引力子聚集到一起形成黑洞时会发生什么。

Then, in 1995, the physicist Edward Witten discovered the mother of all string theories. He found various indications that the perturbative string theories fit together into a coherent non-perturbative theory, which he dubbed M-theory. M-theory looks like each of the string theories in different physical contexts but does not itself have limits on its regime of validity—a major requirement for the theory of everything. Or so Witten’s calculations suggested. “Witten could make these arguments without writing down the equations of M-theory, which is impressive but left many questions unanswered,” explained David Simmons-Duffin, a theoretical physicist at the California Institute of Technology.

然后,在1995年,物理学家Edward Witten发现了一切弦理论的根源。他发现不同的迹象表明这些摄动的弦理论与一个连贯的非摄动理论是相吻合,他称之为M理论。M理论在不同的物理环境中看起来就像各种弦理论,但是它本身却没有对其有效性状态的限制——这是对万有理论的一个主要要求。Witten的计算结果反映的现象大致如此。加州理工学院的理论物理学家David Simmons-Duffin解释称:“Witten可以在不写出M理论方程式的情况下提出这些观点,这令人印象深刻,但它也留下了许多问题。”

Another research explosion ensued two years later, when the physicist Juan Maldacena discovered the AdS/CFT correspondence: a hologram-like relationship connecting gravity in a space-time region called anti–de Sitter (AdS) space to a quantum description of particles (called a “conformal field theory”) moving around on that region’s boundary. AdS/CFT gives a complete definition of M-theory for the special case of AdS space-time geometries, which are infused with negative energy that makes them bend in a different way than our universe does. For such imaginary worlds, physicists can describe processes at all energies, including, in principle, black-hole formation and evaporation. The 16,000 papers that have cited Maldacena’s over the past 20 years mostly aim at carrying out these calculations in order to gain a better understanding of AdS/CFT and quantum gravity.

紧随其后的两年后的另一场研究大爆炸,当时物理学家Juan Maldacena发现了反德西特空间和共形场论的对应:一种类似全息图的关系,它在一个被称为反德西特空间的时空区域中将引力与对在该区域的边界附近移动的粒子的量子描述(称之为“共形场论”)联系在一起。对于反德西特空间时空几何体的特殊案例而言,反德西特空间和共形场论给出了M理论的一个完整定义,它们被注入了负能量,使它们以不同于我们的宇宙的方式实现弯曲。对于这样的假想世界,物理学家可以描述所有能量的过程,原则上包括黑洞的形成和蒸发。在过去的20年里,引用Maldacena的1.6万篇论文主要就是为了进行这些计算,以便更好地理解反德西特空间和共形场论与量子引力。

This basic sequence of events has led most experts to consider M-theory the leading TOE candidate, even as its exact definition in a universe like ours remains unknown. Whether the theory is correct is an altogether separate question. The strings it posits—as well as extra, curled-up spatial dimensions that these strings supposedly wiggle around in—are 10 million billion times smaller than experiments like the Large Hadron Collider can resolve. And some macroscopic signatures of the theory that might have been seen, such as cosmic strings and supersymmetry, have not shown up.

这个基本的事件序列使得大多数专家都认为M理论是最重要的万有理论候选者,尽管它在我们这样的宇宙中确切的定义仍然是未知的。这个理论是否正确是一个完全不同的问题。它所设想的这些弦——以及这些弦在其中振动的额外的、弯曲的空间维度——要比大型强子对撞机能实现的实验要小1亿亿倍。这一理论的一些可能已经被观测到的宏观特征,如宇宙弦和超对称,并没有出现。

Other TOE ideas, meanwhile, are seen as having a variety of technical problems, and none have yet repeated string theory’s demonstrations of mathematical consistency, such as the graviton-graviton scattering calculation. (According to Simmons-Duffin, none of the competitors have managed to complete the first step, or first “quantum correction,” of this calculation.) One philosopher has even argued that string theory’s status as the only known consistent theory counts as evidence that the theory is correct.

与此同时,其他的万有理论也被认为存在着各种各样的技术问题,而且还没有一种重复了弦理论的数学一致性表征,比如引力子散射计算。(根据Simmons-Duffin的说法,没有一个竞争者成功地完成了第一步,或者说这一计算的首次“量子校准”。)一位哲学家甚至认为,弦论的地位是唯一已知的一致理论,它被认为是理论正确的证据所在。

The distant competitors include asymptotically safe gravity, E8 theory, noncommutative geometry, and causal fermion systems. Asymptotically safe gravity, for instance, suggests that the strength of gravity might change as you go to smaller scales in such a way as to cure the infinity-plagued calculations. But no one has yet gotten the trick to work.

远远落后于它的竞争对手包括了渐近安全引力、E8理论、非交换几何和因果费米体系。例如,渐近安全引力表明,当你进入小尺度的时候,引力的强度可能会发生改变,就像治愈被无穷所传染的计算结果一样。但是还没有人获得了这么做的窍门。

 

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多