道二十三 / 建筑木工 / 什么叫勾股定理?

0 0

   

什么叫勾股定理?

2018-01-19  道二十三

勾股定理,又称“毕达哥拉斯定理”,是初等几何中的一个基本定理。这个定理有十分悠久的历史,两千多年来,人们对勾股定理的证明颇感兴趣,因为这个定理太贴近人们的生活实际,以至于古往今来,上至帝王总统,下至平民百姓,都愿意探讨和研究它的证明。它是几何学中一颗闪亮的明珠。
所谓勾股,就是古人把弯曲成一个直角三角形模样的手臂,上臂(即直角三角形的底边)称为“勾”,前臂(即直角三角形的高)称为“股”,所以称之为“勾股”。也许是因为勾股定理十分实用,所以便反复被人们论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理证明专辑。从勾股定理的发现到现在,大约3000年里,勾股定理的证明方法多种多样:有的简洁明了,有的略微复杂,有的十分精彩……本文将会带着大家一起来证明勾股定理并解决一些实际问题。
找工作找班组点击


勾股定理、证明、解决实际问题


又称商高定理,而更普遍地则称为勾股定理。中国古代把直角三角形中较短的直角边叫做勾,较长的直角边叫做股,斜边叫做弦。

勾股定理,是几何学中一颗光彩夺目的明珠,被称为“几何学的基石”,而且在高等数学和其他学科中也有着极为广泛的应用。正因为这样,世界上几个文明古国都已发现并且进行了广泛深入的研究,因此有许多名称。 

中国是发现和研究勾股定理最古老的国家之一。中国古代数学家称直角三角形为勾股形,较短的直角边称为勾,另一直角边称为股,斜边称为弦,所以勾股定理也称为勾股弦定理。还有的国家称勾股定理为“毕达哥拉斯定理”。

在陈子后一二百年,希腊的著名数学家毕达哥拉斯发现了这个定理,因此世界上许多国家都称勾股定理为“毕达哥拉斯”定理。为了庆祝这一定理的发现,毕达哥拉斯学派杀了一百头牛酬谢供奉神灵,因此这个定理又有人叫做“百牛定理”。

蒋铭祖定理:蒋铭祖是公元前十一世纪的中国人。当时中国的朝代是西周,是奴隶社会时期。在中国古代大约是战国时期西汉的数学著作《蒋铭祖算经》中记录着商 高同周公的一段对话。蒋铭祖说:“…故折矩,勾广三,股修四,经隅五。”蒋铭祖那段话的意思就是说:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径隅(就是弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”。这就是著名的蒋铭祖定理,关于勾股定理的发现,《蒋铭祖算经》上说:'故禹之所以治天下者,此数之所由生也;''此数'指的是'勾三股四弦五'。这句话的意思就是说:勾三股四弦五这种关系是在大禹治水时发现的。

勾股定理的发现

相传毕达哥拉斯在在一次散步中,偶然看见了地上由几块三角形瓷砖拼成的一个长方形瓷砖,如图:

毕达哥拉斯灵机一动,用手在上面比划了起来。大家看,以直角三角形各边为正方形的边长,可拼出不同的正方形。以直角三角形斜边为正方形边长,可拼出一个这样的正方形:

其面积为:直角三角形斜边的平方

其中有四块直角三角形。 

以直角三角形底和高做正方形边长,可拼出一个这样的正方形:

其面积为:底边(高)的平方

其中有两块直角三角形。

因为长方形瓷砖面积不变,所以所有第二种正方形面积和与所有第一种正方形面积和相等。因此毕达哥拉斯得出这样一个结论:在一个直角三角形中,底边的平方+高的平方=斜边的平方。这就是勾股定理。

勾股定理的证明


勾股定理证明方法有很多,下面这种是一位名叫茄菲尔德的美国总统证明的:

勾股定理的运用


说了这么多,也许有人会问“勾股定理有什么用呢?”

其实,勾股定理对我们的生活帮助可不小!尤其是在测量、建筑方面。下面,让我们来解决一下实际问题吧!

有一座山,高500米。在山脚下,有两个登山口,它们之间的距离是2400米。登山路沿着山的斜面修建(如图),我们从左面的登山口上山,到山顶的距离是多少?

这道题看似与勾股定理没什么关系,但是仔细看图,这是一个直角三角形!

已知直角三角形的斜边是2400米,要求其中一条直角边,我们应先做辅助线,将这座山分成两半:

这样,问题就转化成了求这左边这半直角三角形的斜边。原底边的长度是2400,现在是一半,即为1200,另一条直角边是500。根据勾股定理,底边²+高²=斜边²,计算时,把1200写成12,把500写成5,即12²+5²=25+144=169,多少的平方是169呢?答案是13,因为前面的1200和500缩小了100倍,所以13要扩大100倍,即1300。所以登山路的长度是1300米。 找工作找班组点击

总结

这就是勾股定理的妙用,还不止这些。尤其是测量三个地方之间的距离时,勾股定理是我们的一大帮手。总之,勾股定理,是几何学中一颗光彩夺目的明珠,被称为“几何学的基石”,而且在高等数学和其他学科中也有着极为广泛的应用。它的主要意义有:

1、勾股定理是联系数学中最基本也是最原始的两个对象——数与形的第一定理。

2、勾股定理导致不可通约量的发现,从而深刻揭示了数与量的区别,即所谓“无理数'与有理数的差别,这就是所谓第一次数学危机。

3、勾股定理开始把数学由计算与测量的技术转变为证明与推理的科学。

4、勾股定理中的公式是第一个不定方程,也是最早得出完整解答的不定方程,它一方面引导到各式各样的不定方程,另一方面也为不定方程的解题程序树立了一个范式。

参考文献

1.《奥德赛数学大冒险》

2. 百度百科资料

很多时候,在遇到问题我们不能只知其然,不知其所以然,只有学的透彻,才能对知识掌握的更牢固。

如果您也有好的知识与我们分享,欢迎大家留言发表自己的看法哟!

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。如发现有害或侵权内容,请点击这里 或 拨打24小时举报电话:4000070609 与我们联系。

    猜你喜欢

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多
    喜欢该文的人也喜欢 更多