1
在印度有一个古老的传说:舍罕王打算奖赏国际象棋的发明人——宰相西萨·班·达依尔。国王问他想要什么,他对国王说:“陛下,请您在这张棋盘的第1个小格里,赏给我1粒麦子,在第2个小格里给2粒,第3小格给4粒,以后每一小格都比前一小格加一倍。请您把这样摆满棋盘上所有的64格的麦粒,都赏给您的仆人吧!”国王觉得这要求太容易满足了,就命令给他这些麦粒。当人们把一袋一袋的麦子搬来开始计数时,国王才发现:就是把全印度甚至全世界的麦粒全拿来,也满足不了那位宰相的要求。 那么,宰相要求得到的麦粒到底有多少呢? 答案是: 1 + 2 + 4+ 8 + ……… + 2的63次方 = 2的64次方-1 = 18446744073709551615(粒) 如果按照当时印度出产小麦量推算,总共是2000年的小麦出产量,表面上看起来所需麦粒数量很少,其实越放越多,最终达到一个天文数量。 巴菲特的复利故事根据资料显示,巴菲特在1965~2006年的42年间,伯克希尔公司净资产的年均增长率达21.46%,累计增长361156%,正是这平均每年21.46%的年增长率让巴菲特成为股神,成为神话。 是什么力量成就了巴菲特? 答案是:时间+复利的力量!
2
(一)单利中文名:单利 别称:利不生利 外文名:simple interest 表达式:F=P×(1+i×n) P:本金,又称期初金额或现值; i:利率,通常指每年利息与本金之比; I:利息; F:本金与利息之和,又称本利和或终值; n:计息期数,通常以年为单位。 单利利息的计算公式为: 利息(I)=本金(P)×利率(i)×计息期数(n) 单利一般定义为:单利是指一笔资金无论存期多长,只有本金计取利息,而以前各期利息在下一个利息周期内不计算利息的计息方法。 如何应用? 例如:银行定期储蓄5年,可以收益多少钱? 假设最初存蓄金额为1000元,5定期年利率5%,那么根据F=P×(1+i×n) 计算: P=1000 i=5% n=5 F=1000×(1+5%×5)=1250元 那么五年定期储蓄收益为1250元,本金为1000元不变,利息为250元。 (二)复利中文名:复利 别称:利滚利 外文名:compound rate 表达式: 1.一次支付复利公式:F=P(1+i)^n 2.等额多次支付复利公式:F=A((1+i)^n-1)/i F:本金与利息之和 A :年金(Annuity),或叫等额值 P:本金 i:利率 n:持有期限 复利一般定义为:复利是指一笔资金除本金产生利息外。在下一个计息周期内,以前各计息周期内产生的利息也计算利息的计息方法。 什么是一次支付复利计算?(公式:F=P(1+i)^n)例如:银行存蓄或者理财等 假如把50000元为本金存入银行,银行的利率或者投资回报率为3%,投资年限为30年,这30年不继续存,也不取出来,那么,30年后所获得的本金+利息收入是多少? 按一次支付复利计算公式来计算就是: P=50000 i=3% n=30 50000×(1+3%)^30=121363.124元 那么三十年后获得 本金:50000元 利息:71363.124元 利息加上本金:121363.124元 翻了2.43倍左右。 什么是等额多次支付复利计算?(公式:F=A((1+i)^n-1)/i)例如:基金定投等 假如每年定投投入1667元(连续定期支付30年等于50010),年增长率为3%(每年滚一次利),投资30年,那么30年后我可以取得多少钱? 按等额多次支付复利计算就是: A=1667 i=3% n=30 1667*((1+3%)^30-1)/3%=79308.218元 那么三十年后获得 本金:50010元(30*1667) 利息:29298.218元 利息加上本金:79308.218元 翻了1.58倍左右。 比较分析一次支付复利 优势:
劣势:
等额多次支付复利 优势:
劣势
小结以购物支付为例,一次支付复利就像一次性全额付款,而等额多次支付就像分期付款。 一次性全额付款支付的金额相对比分期付款少,收益相对更大。 (三)72法则中文名:72法则 表达式:100ln2 72法则一般定义为:以1%的复利计息,72年后(72是约数,准确值是100ln2),本金翻倍。此规律称为72法则。 如何应用?例如:理财投资 假设最初投资金额为100元,复息年利率9%,利用“72法则”,将72除以9(增长率),得8,即需约8年时间,投资金额滚存至200元(两倍于100元),而准确需时为8.0432年。 例如:企业盈利 例1:某企业平均年收益增长率为20%,那么需要多少年企业才会实现年收益翻一倍的目标? 答:72÷20=3.6年 例2:某企业在9年中平均年收益翻了3番,那么9年内的年平均收益增长率为多少? 答:9年财务收益翻了三番,说明企业平均3年翻一番,那么年平均收益增长率为:72÷3=24,即财务年平均收益增长率为24% 小结所谓的“72法则”就是以1%的复利来计息,经过72年以后,你的本金就会变成原来的一倍。这个公式好用的地方在于它能以一推十。 虽然利用72法则不像查表计算那么精确,但也已经十分接近了,因此当你手中少了一份复利表时,记住简单的72法则,就可以快速的估算所需要的时间或者计算平均收益增长率等。 3在生活中,我们如何运用复利与72法则? 下面从银行储蓄、定投基金与互联网理财三种方式来讲解。 (一)银行储蓄前两期我们讲到理财的方式有很多种,其中一种便是大众认可度高的银行存蓄与银行理财,那么我们如何计算自己收益的数值呢? 复利运用: 假设我制定了银行理财定期10年的一次性支付理财计划 细节如下: 本金:50000元 平均年利率:4% 时间:10年 通过一次性支付复利公式计算:F=P(1+i)^n F=50000×(1+4%)^10=74012.12元 10年后收益是:74012.12元,其中利息是:24012.12元。 72法则运用: 与上面同等条件下(除了时间),如果想实现本金翻两倍,收益100000元,那么需要多长时间? 根据公式:n=72÷(i×100) n=72÷(4%×100)=18年 在复利的情况下,如果要实现本金翻两倍,大概需要18年的时间。 (二)定投基金一般而言,基金的投资方式有两种,即单笔投资和定期定额。由于基金“定额定投”起点低、方式简单,所以它也被称为“小额投资计划”或“懒人理财”。适合收入有限又有理财计划的年轻人。 假设你月收入6000元,看中了一款年平均利率为8%,期限为10年的理财产品,打算每个月投资1000元去理财,那么1年就是12000元,那么十年后,收益是多少? 计算如下: 期限:10年 年平均利率:8% 每年支付:12000 等额多次支付复利计算:F=A((1+i)^n-1)/i F=12000(1+8%)^10-1)÷8%=173838.75元 10年后收益是:173838.75元,其中投入:120000元,利息是:53838.75元。 (三)互联网理财互联网理财属于新兴的金融理财方式,也是一门比较热门的理财方式,如果按照互联网理财的方式来比较单利投资与复利投资是怎样的呢? 下面以互联网金融的钱富通为例: 条件如下: 投资金额:10000元 年利率约为18.5% 投资时间:10年 一、单利 计算公式:F=P×(1+i×n) F=10000×(1+18.5%×10)=28500元 按照单利计算10年共收益:28500元,翻了2.85倍。 二、复利 计算公式:F=P(1+i)^n F=10000×(1+18.5%)^10=54598.851元 按照复利计算10年共收益:54598.851元,约翻了5.46倍。 如果是收益20000元,需要多长时间? 根据72法则公式计算:n=72÷(i×100) n=72÷(18.5%×100)=3.89年 小结:从单利与复利的收益倍数来分析,复利的力量是无比巨大的。 4总结从上述的事例中可以分析得出:
下期我们来讲讲“马太效应”,是什么造成了穷人越来越穷,富人越来越富? 下期钱富通理财课堂,等您来听课! ![]() |
|