分享

科学网—腰痛患者 是否和如何选 择影像学检查的

 duxm60 2018-05-23

 

腰痛患者是否和如何选择影像学检查的循证医学依据 

王毅翔 1, 吴爱悯 2, Fernando Ruiz Santiago 3 

1 香港中文大学医学院影像及介入放射科 (香港,新界沙田)

2 温州医科大学附属第二医院脊柱外科  (浙江省,温州)

3 Department of Radiology, Hospital of Traumatology, Carretera de Jaen SN, Granada, Spain

通讯作者: 王毅翔  yixiang_wang@cuhk.edu.hk

 

-本文为初稿, 鉴于临床上腰痛过度检查过度治疗极为常见,特先在科学网上贴出-。腰痛发病率很高,多达三分之二的成人在其一生中的某个时间点会有腰痛。

据我们的了解 德国的人均医生数量是美国的两倍 而现在中国的人均放射科医生数量 远多于日本,也多于英国, 稍多于德国 - 但是中国的放射科医生还是好忙,大量的过度检查就是一个重要的原因。

 

摘要

无论是否存在神经根痛,大多数急性腰痛患者在发病头4周内症状会显著改善。这些腰痛患者不需要影像学检查。对那些经过6周的内科治疗和物理治疗后腰痛很少或几乎没有改善的患者,可以考虑影像学检查。对于怀疑有严重潜在疾病的患者,如马尾神经综合征、恶性肿瘤、骨折和感染,也可以考虑影像学检查。在初级保健门诊中,腰痛原因由脊柱转移性恶性肿瘤引起者占0.7%,脊柱感染引起者占0.01%,马尾神经综合0.04%。几乎所有此类小概率病症患者都有可以发现的危险因素。脊柱压缩性骨折(4%)和脊柱炎症性疾病(<5%)也可能导致背痛,但这些情况诊断及处理的紧迫性较低。影像学检查是造成腰痛医疗成本上升的重要驱动因素,这不仅是这些检查的直接成本。不必要的影像学检查还可能导致额外检查、随访和转诊,并可能导致患者接受一些效果有限或效果效果不确定的手术治疗。除非有证据怀疑患有潜在严重疾病,非特异性腰痛患者的影像学检查应在起病6个星期后才进行。

  

   引言

 

腰痛指位于下肋骨边缘和臀痕之间的疼痛,通常伴有一侧或双侧大腿放射痛,一些腰痛患者还伴下肢神经功能症状。腰痛发病率很高,多达三分之二的成人在其一生中的某个时间点会有腰痛。一般发病时间为06周定义为急性腰痛,612周为亚急性腰痛,大于12周为慢性腰痛 [1]。腰痛是一种症状而非一种疾病,腰痛可由多种已知或未知的组织异常或疾病引起 [2]由于很少能够确定导致腰痛的具体原因; 因此大多数腰痛为 非特异的腰痛

 

就诊时,医生需要通过病史和体格检查初步将腰痛患者归类如下:(1)非特异性腰痛; 2)与神经根病或椎管狭窄相关的腰痛; 3)非脊柱来源的腰背部疼痛; 或(4)其他特定脊柱病因相关的腰痛(表1)。 病史询问应包括骨质疏松症、骨关节炎和癌症,以及既往影像学检查。全身情况询问应包括:有无不明原因的发热、体重减轻、晨僵、妇科症状、以及泌尿和胃肠等问题。体格检查应包括直腿抬高实验和特定的神经肌肉检查。测试深反射,肌力和感觉可帮助确定有哪些神经根受累 [3]

 

临床上过度使用影像学检查非常常见 [4],原因包括门诊时间短促、医生对指南的误解、害怕漏诊罕见而严重的病情、希望与患者保持和谐关系 [5]。对腰痛患者合理使用影像学检查,需要在实践中不断重复推广诊疗指南 [6-8]。本文综述新近的腰痛影像学检查指南以及脊柱影像学异常发现与腰痛症状的相关性。 

 

美国内科协会、美国疼痛医学协会、美国放射学协会指南

 

许多单纯腰痛由肌肉扭伤和拉伤、韧带损伤、脊柱退行性变引起。腰椎影像学异常发现在没有腰痛的人群中很常见,而且与腰痛症状相关性并不紧密 [9]。腰椎影像学异常改变的存在并不一定意味着这些异常是造成腰痛症状的原因 [10] 没有证据表明按常见的影像学异常来选择治疗方法会比常规治疗的效果方法更好 [11] 一项前瞻性研究发现,在腰痛发作前有腰椎影像学异常患者中,84%的患者在腰痛症状出现后影像学异常没有改变或影像学异常反而改善 [12]

 

大多数急性腰痛会自行好转,而且大多数腰痛患者都会有一些非特异性的影像学异常发现, 因此影像学检查的意义非常有限 [13]。美国内科协会、美国疼痛医学协会、美国放射学协会的指南都建议对有临床指征的腰痛患者进行有选择的影像学检查 [11, 14]。对于潜在需要进一步治疗的患者,如果腰痛持续时间超过6周并有持续性神经根性症状且保守治疗无效,可以进行影像学检查。如果腰痛患者有严重进行性神经功能缺损或症状、病史提示潜在严重疾病或者有明确的严重疾病诱因,则应进行影像学检查。除了严重进行性神经功缺损外,与腰痛相关的潜在严重疾病包括癌症、感染、马尾综合征。在初级保健门诊中,腰痛原因由脊柱转移性恶性肿瘤引起者占0.7%,脊柱感染引起者占0.01%,马尾神经综合征占0.04 [15, 16]。脊柱压缩性骨折(4%)和脊柱炎症性疾病(<5%)也可能导致背痛,但这些情况需要紧急处理的可能性较低 [16, 17]。已经转移的恶性肿瘤也很难治愈。几乎所有这些小概率病症患者都会有可识别的危险因素。在一项回顾性研究中,963例急性腰痛患者发现8例肿瘤或骨折,而这些患者均有临床危险因素 [18]。一项前瞻性研究发现,年龄小于50岁且没有肿瘤病史、没有体重减轻和其他全身疾病迹象、没有腰痛无改善病史的 1170例急性腰痛患者中,没有发现恶性肿瘤病例 [19]。另外4项研究包括了399名无风险因素的患者也均未发现严重病情 [20]

 

在过去,与严重疾病相关的风险因素、病史特征和体检结果统称为危险信号。但许多这些危险信号判断严重腰椎疾病准确性或风险效益比颇受质疑。一项研究表明,80%急性腰痛患者至少有一个危险信号,但只有不到1%患有严重疾病 [21]。一项系统性综述显示大多数个体患者的危险信号没有意义[22],而且大多数危险信号的特异性非常低,常常导致不必要的专科转诊和影像学检查[22, 23]。对于脊柱恶性肿瘤,最有意义的危险信号是肿瘤病史。以前的指南建议50岁以上的腰痛患者进行影像学检查。然而,研究显示在首次腰痛就诊后6周内接受脊柱影像学检查的老年人与未接受早期影像学检查的类似患者相比,1年后的患者状况无统计显著差异 [24]。目前不认为年龄超过50岁本身是独立的危险信号

 

一项澳大利亚初级保健1172例急性(<2周)腰痛患者的研究发现,有特殊原因者为0.9%,其中骨折为常见(11例中占8例),其次是炎症性疾病(11例中占2例)[21] 然而,乌干达一所外科诊所一项204名患者的回顾性研究发现,4%患者为脊柱结核,3.5%为椎体压缩性骨折,1%为布鲁氏菌病,1%为恶性肿瘤[25]。这些病因模式的差异反映了低收入国家传染病的负担, 而且腰痛的特殊病因在不同的地区可能有不同的表现[2]

 

 

马尾综合征是由于巨大椎间盘中央型突出、肿瘤、或硬膜外脓肿导致马尾神经严重受压[26] 虽然严格的说马尾综合征不导致腰痛,但马尾受压后果非常严重。马尾综合征比较少见,大多数初级保健临床医生在工作生涯中可能不会看到该病例 [27] 马尾综合征为一种外科急症,其特点是机械性或神经根性疼痛突然发作、下肢无力、膀胱及肠功能障碍、会阴感觉消失。其主要的临床特征是尿潴留和溢出性尿失禁 [28]

 

大多数腰痛患者预后良好

 

大多数急性腰痛患者,无论是否存在神经根性痛,在发病4周内疼痛会有显著改善 [29, 30]。大多数神经根性痛症状会在数周至数月内自行消失。最近的系统性综述提供了有力的证据表明大多数腰痛在6周内会有大幅改善,到12个月时平均疼痛水平很低 [31]

 

1970Hakelius [32]报告了一项研究跟踪腰骶神经根病患者的临床过程。38例患者临床表现为神经根病且脊髓造影显示椎间盘突出,88%患者症状在6个月后消失。1989SaalSaal [33] 跟踪随访58名基本没有接受治疗的腰神经根病患者, 31周后92%患者腰痛消失,92%患者已经恢复了工作。另一项由Weber等人完成的研究 [33, 34]观察了208例患者腰骶神经根病的短期演变。这些患者先卧床休息一周,然后逐渐恢复活动,但均未接受理疗。4周后70%患者疼痛明显减轻,约20%患者出现症状复发。神经根病良好预后的自然病史说明患者初始几周至数月内应采取保守治疗。

 

大多数椎间盘突出症患者在症状发作8周内突出的椎间盘吸收或消退[ 36, 37 ]。早在1945年,就有腰椎间盘突出症自发消退的脊髓造影研究报告 [38]。这种现象在许多后续腰椎和颈椎随访研究中得到证实[39] 1990Saal[40]发表了一项对12CT证实腰椎间盘突出症患者的研究,平均25个月后重新扫描发现:46%患者椎间盘突出有75-100%吸收;36%患者椎间盘突出有50-75%吸收;11%有0-50%的吸收。Saal [40]同时发现椎间盘突出完全再吸收在椎间盘突出程度大的患者中更常见,但没有发现患者临床表现和椎间盘突出形态学改善之间有显著相关性。Bozzao等报道了大约两年时间间隔内69例腰椎间盘突出症患者变化的结果:48%患者椎间盘突出缩小了70%以上,15%患者椎间盘突出缩小了3050%,29%患者椎间盘突出没有变化,而8%患者椎间盘突出程度有所增加 [41]。总体而言,69例患者中有64%患者椎间盘突出有所缩小,而且中等和较大突出患者缩小程度最大[41]Cowan等对106腰骶神经根病患者1年后进行重复CT扫描,发现76%患者椎间盘突出减轻或完全消退 [42]


虽然大多数急性腰痛可以自愈,但也有相当一部分患者发展为慢性或复发性腰痛[31, 43, 44, 45] 一项大型研究结果显示:973名急性轴性腰痛患者在首次就诊12个月后未能完全康复 [46]。一项2017年的系统性综述发现大约33%腰痛患者恢复后1年内有疼痛复发现象[47]。然而,这些研究并未能可靠地估计腰复发的风险因素。

腰痛病人中常见的脊柱退行性改变

 

在没有症状的个体中影像学发现退行性脊柱改变现象很常见,并随年龄增长退行性脊柱病变发病率也相应增加。椎间隙狭窄和椎间盘膨出在年轻人中也较常见,并且随年龄每增加一岁,发病率约增加1 [48]。在所有年龄段人群中,椎间盘突出和纤维环裂隙也较常见,但其发病率不随年龄增加而显著增加 [49]50岁或以下的成人患者中,椎间盘膨出、椎间盘退变、峡部裂与腰痛有显著相关性;但这些异常影像发现不应被解释成是腰痛的直接诱因 [49, 50]。除了诱发骨质疏松外,绝经也是诱发女性快速脊柱退行性变的一个原因[51,52],从而导致老年女性中腰痛患病率增加 [53]。在腰痛患者中,磁共振成像显示退行性变不一定与腰痛及其程度相关 [54,55,56]

 

在常见的脊柱退行性影像学表现中,1Modic改变以及广泛的小关节水肿与腰痛相关性密切 [57,58,59,60,61,62]。腰痛患者中检查发现Modic改变的机率为20-50%,而无腰痛症状人群中检查发现Modic改变的机率为10-25[63,64]。磁共振显示1Modic改变的水肿表现可能与腰痛有关 [65,66]。一些研究认为1Modic改变的病因包括椎体终板退变、椎体终板创伤、促炎介质的局部作用、以及低度细菌感染。一项回顾性研究中研究了 2457例有腰痛症状的病人,按照椎间盘造影 (provocative discography)为参考标准,1Modic改变的腰痛阳性预测值为81%,而特异性为98[57]

 

无症状的 Modic改变一般局限于腰椎中段椎体的前上终板而且病变较小,椎间隙高度也无改变。Chung[64]报道在无症状患者中发现椎体终板附近的骨髓改变主要涉及中段腰椎上终板的前方;而且这些变化较为局限,为小片状异常信号而非大片汇合病变。这些改变可能是随年龄增大而发生的一些退行性改变。而有腰痛症状的患者中Modic改变常常累及下腰部, 并且出现与退变椎间盘相邻的终板上,为一种病理性改变并常常有疼痛。L5-S1水平的广泛1Modic改变尤其与这一水平的腰痛症状相关,而在上段腰椎的1Modic改变与疼痛相关性较弱 [67]。位于终板后部的Modic改变比位于终板前部的Modic改变与腰痛关系更密切;垂直方向深入椎体的Modic改变与腰痛也密切相关 [68]

 

一些纵向研究发现Modic改变可以消退,但消退过程仍不完全清楚 [69,70] Jensen等发现仅发生在终板上的小 Modic改变比与延伸到椎体中较大的Modic改变更可能消退 [69] Mitra等人报道1 Modic改变向 2Modic改变后患者腰痛减轻[71]。对慢性腰痛患者1年的前瞻性磁共振随访研究发现,1 Modic改变并发腰痛患者大多数在1年内腰痛程度下降,但有36%患者腰痛持续或者程度加重 [72] 1Modic 1改变伴有骨性终板损伤和椎间隙狭窄提示长期腰痛的可能性 [72]

 

最近的证据提出了细菌感染是一些腰痛患者的病因[73]Dudli 等报道痤疮丙酸杆菌(Propionibacterium acnes) 低度感染促发Modic改变[74]Albert 等报道 162名慢性腰痛并存在近期(<24个月)椎间盘突出与1Modic改变患者口服抗生素治疗100天后,患者背部和腿部疼痛显著减轻[75]。然而这些结果需要进一步研究证实[76]

 

另外一些情况也可以引起椎体终板信号异常,需要根据临床和影像学与Modic改变区别。这些情况包括血清阴性脊柱炎中的AndersonRomanus 病变、弥漫性特发性骨肥厚症中的韧带下肢水肿、血液透析脊柱关节病、神经性脊柱病和感染性椎间盘炎[61,77]

 

Schmorl氏结节在成年人中常见,通常无症状。如果 Schmorl氏结节周围出现骨水肿,则可以引起腰痛  [78,79]

 

椎间盘突出伴有局部炎症是引起神经根性痛和神经根病的最常见原因。然而,在无症状人群中,影像学也常常发现椎间盘突出;并且它们可以随着时间推移变小或消失,这些改变与疼痛的缓解无关。有神经根性痛的患者更有可能存在椎间盘突出及神经根受压;但是影像学改变的严重程度与病人的腰痛程度无相关性 [55]CT或磁共振技术可以看到神经根的压迫情况;严重的神经根压迫和膝关节远端下肢放射痛之间常常有很强的相关性[16]。即使对于有神经根性病变证据的患者,保守治疗6周内不进行影像学检查是合适的 [16]

 

纤维环裂隙与腰痛之间的关联存在争议[60] Brinjikji [48, 49] 的系统性文献综述发现50岁以下成年人群中,纤维环裂隙及高信号区与腰痛无关。Mitra [80]也没有发现纤维环裂隙的发展与腰痛发展之间有一致性[80]

 

文献综述显示临床上对于小关节引起疼痛的个体进行识别是不可能的 [50,81] 然而,磁共振发现小关节关节腔内液体、小关节突水肿与小关节不稳、腰痛症状存在有关 [62,82,83]。这些异常可能有助于确定经皮影像学导向治疗的靶点,包括局部皮质类固醇渗透治疗[84]。峡部裂患者中观察到的椎弓根T2加权高信号也可能是疼痛原因[85,86]

 

腰椎管狭窄症通常是由于脊柱退变性改变如小关节骨关节炎、黄韧带肥厚和椎间盘突出等原因引起椎管或椎间孔狭窄所致。椎管前后径小于12mm 强烈提示椎管狭窄 [87]; 然而硬膜囊的横截面积更适合诊断椎管狭窄。硬膜囊横截面积值<76mm2提示严重狭窄,76-100mm2提示中度狭窄 [88,89]。椎间孔垂直或横向狭窄为轻度狭窄;而垂直和横向均窄而神经根尚未受压变形为中度狭窄;椎间孔严重狭窄则显示神经根受压而发生形态学改变 [90]

 

与椎间盘突出一样,椎管狭窄在无症状人群中也很常见(4-28%)[91, 92]。腰椎管狭窄临床诊断需要结合患者的特征性症状和体征,并且有影像学证实腰椎管狭窄或椎间孔狭窄 [93]。腰椎管狭窄患者因局部压迫引起神经根的静脉充血,同时相应部位的神经根局部缺血从而引起间歇性跛行[94]。大多数采取保守治疗的椎管狭窄患者的腰痛症状都比较稳定或症状有所改善 [94]Amundsen等人的一项部分随机研究发现[95]:有轻度症状的非随机组群(50个病人)中57%患者4年随访后结果良好;而在18个随机非手术治疗的患者中,44%患者4年后结果良好。Minamide等人[96]发现,34例腰椎管狭窄患者保守治疗平均随访时间11.1年后,相似比例的患者表现为(1)改善、(2)症状没有改变、及(3)进展。

 

退行性腰椎滑脱症是一种由于退行性改变导致一个椎体与另外一个椎体位置相对移位的疾病,并可导致中央管狭窄 [98]。脊椎峡部裂是峡部或上下关节突连接部断裂,可以是先天性或后天性,后者可由创伤引起。退行性腰椎滑脱症和峡部裂性腰椎滑脱症常常在无症状人群中偶然发现 [98,99]。退行性腰椎滑脱的基本影像学特征包括侧位片上L4椎体相对L5椎体向前(或向后)位移,但是峡部完整。有时也可以看到 L5椎体相对S1椎体移位,或者L3椎体相对L4椎体移位。与退行性滑脱患者相反,脊柱峡部裂滑脱患者的棘突不随椎体移位而移位,中央管常常扩大而椎间孔通常变窄 [100]。椎体后滑脱症,即上位椎体相对于下位椎体向后移位,可能继发于椎体骨软骨病或髓核急性突出引起的椎间盘物质丢失[101]。无论是退行性或是峡部裂性,绝大多数腰椎滑脱症患者没有临床症状。即使是严重的腰椎滑脱症患者也可能无症状 [102,103] 但有时腰椎滑脱会导致脊柱不稳,可能需要手术治疗 [103,104]

 

总之,影像学检查可以发现可能与腰痛相关的一些异常,并且可能在某些情况下指导治疗。但是临床上常常很难证明患者的疼痛仅源自影像学看到的异常表现。而且即使影像学检查发现异常,这些阳性结果可能不一定直接与特定患者的腰痛相关。

 

腰痛影像学检查的潜在负面后果

 

影像学检查是腰痛诊疗成本上升的一个重要驱动因素。这不仅是因为检查的直接成本,而且还包括后续成本。不必要的影像学检查可能导致额外检查、随访和转诊,并可能导致患者接受一些疗效有限或疗效不确切的手术治疗。腰痛常规影像学检查似乎不能改善临床结果,但可能带来一些负面结果[20, 105] 。对6项随机试验进行的荟萃分析[20] 纳入了1804例主诉为急性或亚急性腰痛患者,这些患者无临床或病史提示有潜在特殊病变,进行常规腰部影像检查(X线,MRI/CT)组与未进行常规影像学检查的普通处理组进行比较发现疼痛、功能、生活质量或整体患者评分改善等方面没有差异 [20] 短期效果(<3个月)普通处理组稍优于常规成像组。这些结果估计适用于伴或不伴神经根病的患者,而且检查方法无论是X线、CT、磁共振都一样[20]

 

告诉患者腰部影像学检查异常发现,尤其是与临床无关的影像学发现,会使患者增加心理负担,从而过度关注轻微的腰部症状,因担心会造成更多损伤而避免运动或其他推荐的活动从而阻碍康复。 一个对所有急性腰痛患者都进行腰椎磁共振检查的临床试验中[106],  与那些不知道检查结果的患者相比,随机分配到被告知检查结果的患者总体健康状况改善更小。在另一项临床试验中 [107] ,与没有X线检查的患者比较,如果患者至少腰部疼痛6周后进行X线摄片,则3个月后会有更多腰痛症状及全身总体健康状况更不好, 并且更有可能寻求后续诊疗。

 

尽管大多数脊柱影像学检查异常发现的临床意义存在不确定性,但是这些异常发现可能被作为手术或其他干预的目标靶点 [108]。诸如椎间盘退变、小关节增生、和椎间盘突出通常被认为是背痛的诱因,引发内科或外科干预,而这些干预未必能缓解患者症状 [12, 106, 109]Lurie[105]报道随着CT和磁共振使用率的增加,美国脊柱手术的比例也在增加。一项研究发现,对于与职业有关的急性腰痛,与没有早期核磁共振成像的对照组患者进行倾向匹配对比,一个月内接受磁共振检查使接受手术治疗的风险增加8倍以上,随后的总医疗费用增加5倍以上 [110]

 

腰痛影像学检查方法的选择

 

如果决定进行成像,通常首选磁共振,因为它不涉及射线辐射危害,并且软组织成像效果好,对于骨髓的异常也比较敏感。由于骨质疏松性骨折和椎体转移瘤影响同一年龄段患者,磁共振在鉴别良性与恶性骨折中可发挥重要作用 [77,111,112,113]。在有原发性肿瘤的患者中,多达三分之一的椎体骨折仍然只是继发于骨质疏松症 [114]

 

 

X线检查是评估具有创伤病史和怀疑可能患有椎体压缩性骨折的腰痛患者的首选影像学检查。过屈和过伸位X线片可用来评估腰椎稳定性。腰椎不稳定的诊断标准有未广泛统一; 然而,当比较过屈和过伸位X线片时发现3mm以上的椎体移位或者相邻节段成角变化值大于10°时,通常诊断为腰椎不稳[115]

 

CT扫描可以显示骨骼细节,但显示硬膜外软组织病变(如椎间盘疾病)时效果没有磁共振好。CT矢状和冠状重建可用于揭示骨结构病变如椎体峡部裂、假关节形成、骨折、脊柱侧凸和椎管狭窄;以及术后评估骨移植完整性、外科融合情况和内固定位置。对于不能进行磁共振检查的患者,可行脊髓造影CT检查以评估椎管和硬脊膜囊以及椎间孔的通畅性。脊髓造影的缺点是需要采用侵入性方式造影剂鞘内注射。

 

腰椎X线和CT检查会累积辐射照射,有导致组织癌变的潜在可能。腰椎CT的平均有效辐射剂量为6-7 mSv [116, 117] 。腰椎X线检查的辐射照射在年轻女性中尤其需要关注,因为辐射靠近性腺且难以有效屏蔽。

 

随着磁共振技术的广泛应用,近年来同位素骨扫描在急性腰痛患者中的作用发生了变化。T-99m亚甲基二膦酸盐骨扫描单光子发射计算机断层扫描用于检测椎骨感染或隐匿性椎体骨折是一种敏感的检测方法,但特异性差。对于怀疑腰椎峡部裂的年轻患者,检测隐匿性峡部裂的金标准是单光子发射计算机断层扫描,但这种方法的缺点包括注射放射性示踪剂及辐射照射。最近研究显示了磁共振在隐匿性峡部裂诊断中的有效性[118]

 

进行重复影像学检查应基于临床症状的发展或出现新的症状,如新的或进行性神经症状或新的外伤。

 

腰痛治疗原则

 

腰痛应先采用非药物治疗,包括自我调节、锻炼、理疗、心理治疗以及一些传统医学方法如针灸、推拿、热疗、瑜伽、太极等 [119, 120, 121]。告诉患者腰痛的自然病史,鼓励患者按正常的生活起居,避免因为腰痛而长期卧床 [122].

 

当非药物治疗无效时,可予以药物治疗。药物治疗的原则是缓解疼痛同时尽量避免药物副作用。口服非甾体类抗炎药是腰痛的首选药物,但需考虑这些药物具有胃肠道出血,肝脏、心脏、肾脏毒性等副作用。当患者存在非甾体抗炎药禁忌、不耐受、或无效时,可考虑短期使用阿片类药物(联合或者不联合扑热息痛均可)。另外可考虑短期内使用肌肉松弛药作为辅助治疗[120]。而普瑞巴林治疗神经根性痛的疗效仍有争议[123, 124]

 

对于那些严重功能障碍、放射痛或顽固性痛患者,可考虑行硬膜外注射或外科手术治疗。硬膜外类固醇注射可缓解患者的急性神经根性痛症状。腰椎硬膜外治疗可通过经椎间孔、椎板间或骶管三种入路。该技术可与保守治疗相结合,以提高疼痛缓解疗效和改善患者活动度。尽管硬膜外类固醇注射疗效还存在争议,但注射后三个月内症状有小幅改善趋势 [125]。有证据支持硬膜外注射治疗椎间盘突出引起的神经根性痛短期疗效显著(<6个月),中等证据支持长期有效(≥6个月) [126] 但没有证据支持对无神经根症状的患者使用硬膜外类固醇注射[127]。严重椎管狭窄患者和狭窄病变超过三个腰椎节段患者的注射效果较差[125,127]。硬膜外类固醇注射不能降低患者需要手术治疗的长远可能性 [119,128]

 

大多数无伴发其他严重疾病的腰痛患者无需手术治疗。但是对于解剖结构异常与疼痛部位一致,而且有严重功能障碍、持续疼痛或进行性神经功能损害的患者,尤其是非手术治疗超过6-12个月无效的患者,可以考虑手术治疗。一项系统综述[129]对比了椎管单纯减压术与非手术治疗神经根性痛的疗效,发现在神经根痛发作12周内行椎管单纯减压术与非手术治疗相比具有更快的疼痛缓解效果;但1-2年后的随访发现两组患者的疼痛或生活功能无显著性差异。对于有症状的腰椎管狭窄患者,手术治疗对疼痛和生活功能的改善可能优于非手术治疗[130],但椎体融合术比椎管单纯减压术似乎没有为患者带来更好的治疗效果或治疗效果有限[131,132]。因此椎体融合术应严格控制手术指征,仅限于腰椎管狭窄伴有不稳或畸形等患者[133]

 

小结:临床依据提示腰痛患者常规行 X线片或者CT / MRI检查和患者临床受益没有相关性。不必要的影像学检查可能对患者造成不必要的危害,导致患者接受更多不必要的治疗。影像学检查应限于严重或进行性神经功能缺损的患者、存在或者可疑存在严重或特定潜在疾病的高危患者。影像学检查结果需要结合全面详细的病史和体格检查。

 

1. Goertz M, Thorson D, Bonsell J, et al. Institute for Clinical Systems Improvement. Adult acute and subacute low back pain.

< https://www./guidelines__more/catalog_guidelines_and_more/catalog_guidelines/catalog_musculoskeletal_guidelines/low_back_pain/>

2.  Hartvigsen J, Hancock MJ, Kongsted A, Louw Q, Ferreira ML, Genevay S, Hoy D, Karppinen J, Pransky G, Sieper J, Smeets RJ, Underwood M; Lancet Low Back Pain Series Working Group. What low back pain is and why we need to pay attention. Lancet. 2018  doi: 10.1016/S0140-6736(18)30480-X. [Epub ahead of print]

3. Last AR, Hulbert K. Chronic low back pain: evaluation and management. Am Fam Physician. 2009 Jun 15;79(12):1067-74.

4. Medicare Part B Imaging Services. Rapid spending growth and shift to physician offices indicate need for CMS to consider additional management practices. Washington: U.S. Government Accountability Office; 2008.

5. Slade SC, Kent P, Patel S, Bucknall T, Buchbinder R. Barriers to primary care clinician adherence to clinical guidelines for the management of low back pain: a systematic review and meta-synthesis of qualitative studies. Clin J Pain 2015; 32: 800−16.

6. Mesner SA, Foster NE, French SD. Implementation interventions to improve the management of non-specific low back pain: a systematic review. BMC Musculoskelet Disord 2016; 17: 258.

7. Baker SR, Rabin A, Lantos G, Gallagher EJ. The effect of restricting the indications for lumbosacral spine radiography in patients with acute back symptoms. AJR Am J Roentgenol 1987;149: 535−8.

8. Eccles M, Steen N, Grimshaw J, et al. Effect of audit and feedback, and reminder messages on primary-care radiology referrals: a randomised trial. Lancet 2001; 357: 1406−9.

9. Boden SD, Davis DO, Dina TS, Patronas NJ, Wiesel SW. Abnormal magnetic-resonance scans of the lumbar spine in asymptomatic subjects. A prospective investigation. J Bone Joint Surg Am. 1990;72:403-8.

10. Jarvik JG, Hollingworth W, Martin B, Emerson SS, Gray DT, Overman S, et al. Rapid magnetic resonance imaging vs radiographs for patients with low back pain: a randomized controlled trial. JAMA. 2003;289:2810-8.

11. Chou R, Qaseem A, Snow V, Casey D, Cross JT Jr, Shekelle P, et al; Clinical Efficacy Assessment Subcommittee of the American College of Physicians. Diagnosis and treatment of low back pain: a joint clinical practice guideline from the American College of Physicians and the American Pain Society. Ann Intern Med. 2007;147:478-91.

12. Carragee E, Alamin T, Cheng I, Franklin T, van den Haak E, Hurwitz E. Are first-time episodes of serious LBP associated with new MRI findings? Spine J. 2006;6:624-35.

 

13. Don AS, Carragee E. A brief overview of evidence-informed management of chronic low back pain with surgery. Spine J. 2008;8(1):258-265.

14. Patel ND, Broderick DF, Burns J, Deshmukh TK, Fries IB, Harvey HB, Holly L, Hunt CH, Jagadeesan BD, Kennedy TA, O'Toole JE, Perlmutter JS, Policeni B, Rosenow JM, Schroeder JW, Whitehead MT, Cornelius RS, Corey AS. ACR Appropriateness Criteria Low Back Pain. J Am Coll Radiol. 2016 Sep;13(9):1069-78.

15. Deyo RA, Rainville J, Kent DL. What can the history and physical examination tell us about low back pain? JAMA. 1992;268:760-5.

16. Jarvik JG, Deyo RA. Diagnostic evaluation of low back pain with emphasis on imaging. Ann Intern Med. 2002;137:586-97.

17. Underwood MR, Dawes P. Inflammatory back pain in primary care. Br J Rheumatol. 1995;34:1074-7.

18. Suarez-Almazor ME, Belseck E, Russell AS, Mackel JV. Use of lumbar radiographs for the early diagnosis of low back pain. Proposed guidelines would increase utilization. JAMA. 1997;277:1782-6.

19. Deyo RA, Diehl AK. Cancer as a cause of back pain: frequency, clinical presentation, and diagnostic strategies. J Gen Intern Med. 1988;3:230-8.

20. Chou R, Fu R, Carrino JA, et al. Imaging strategies for low-back pain: systematic review and meta-analysis. Lancet 2009;373: 463–72

21. Henschke N, Maher CG, Refshauge KM, et al. Prevalence of and screening for serious spinal pathology in patients presenting to primary care settings with acute low back pain. Arthritis Rheum 2009; 60: 3072–80

22. Downie A, Williams CM, Henschke N, et al. Red flags to screen for malignancy and fracture in patients with low back pain: systematic review. BMJ 2013; 347: f7095

23. Underwood M, Buchbinder R. Red flags for back pain. BMJ 2013; 347: f7432.

24. Jarvik JG, Gold LS, Comstock BA, et al. Association of early imaging for back pain with clinical outcomes in older adults. JAMA2015;313:1143-53.

 

25. Galukande M, Muwazi S, Mugisa DB. Aetiology of low back pain in Mulago Hospital, Uganda. Afr Health Sci 2005; 5: 164–67.

26. Gardner A, Gardner E, Morley T. Cauda equina syndrome: a review of the current clinical and medico-legal position. Eur Spine J. 2011;20(5):690-697.

27. Lavy C, James A, Wilson-MacDonald J, Fairbank J. Cauda equina syndrome. BMJ 2009; 338: b936.

28. Abrahm JL. Assessment and treatment of patients with malignant spinal cord compression. J Support Oncol 2004; 2: 88–91.

29. Pengel LH, Herbert RD, Maher CG, Refshauge KM. Acute low back pain: systematic review of its prognosis. BMJ. 2003;327:323.

30. Vroomen PC, de Krom MC, Knottnerus JA. Predicting the outcome of sciatica at short-term follow-up. Br J Gen Pract. 2002;52:119-23.

31. da C Menezes Costa L, Maher CG, Hancock MJ, McAuley JH, Herbert RD, Costa LO. The prognosis of acute and persistent low-back pain: a meta-analysis. CMAJ 2012; 184: E613–24.

32. Hakelius A. Prognosis in sciatica: a clinical follow-up of surgical and non surgical treatment. Acta Orthop Scand Suppl 1970;129:1–76.

33. Saal JA, Saal JS. Nonoperative treatment of herniated lumbar intervertebral disc with radiculopathy. Spine 1989;14(4):431–7.

34. Weber H, Holme I, Amilie E. The natural course of acute sciatica, with nerve root symptoms in a double blind placebo-controlled trial evaluating the effect of piroxicam. Spine 1993;18:1433–8.

35. Weber H. Lumbar disc herniation. A controlled prospective study with ten years of observation. Spine 1983;8:131–40.

36. Autio RA, Karppinen J, Niinimaki J, et al. Determinants of spontaneous resorption of intervertebral disc herniations. Spine (Phila Pa 1976) 2006;31:1247-52.

37. Chiu CC, Chuang TY, Chang KH, Wu CH, Lin PW, Hsu WY. The probability of spontaneous regression of lumbar herniated disc: a systematic review. Clin Rehabil 2015; 29: 184–95.

38. Key JA. The conservative and operative treatment of lesions of the intervertebral discs in the low back. Surgery 1945;17:291–303.

39. Teplick JG, Haskin ME. Spontaneous regression of herniated nucleus pulposus. AJR Am J Roentgenol 1985;145(2):371–5.

40. Saal JA. Natural history and nonoperative treatment of lumbar disc herniation. Spine (Phila Pa 1976). 1996;21(24 suppl):2S-9S.

41. Bozzao A, Gallucci M, Masciocchi C, et al. Lumbar disc herniation: MR imaging assessment of natural history in patients treated without surgery. Radiology 1992; 185:135–41

42. Cowan N, Bush K, Katz D, et al. The natural history of sciatica: a prospective radiological study. Clin Radiol 1992;46(2):7–12.

43. Dunn KM, Hestbaek L, Cassidy JD. Low back pain across the life course. Best Pract Res Clin Rheum 2013; 27: 591–600.

44. Kongsted A, Kent P, Axen I, Downie AS, Dunn KM. What have we learned from ten years of trajectory research in low back pain? BMC Musculoskelet Dis 2016; 17: 220.

45. Itz CJ, Geurts JW, van Kleef M, Nelemans P. Clinical course of non-specific low back pain: a systematic review of prospective cohort studies set in primary care. Eur J Pain 2013; 17: 5–15.

46. Henschke N, Maher CG, Refshauge KM, et al. Prognosis in patients with recent onset low back pain in Australian primary care: inception cohort study. BMJ. 2008;337:a171.

47. da Silva T, Mills K, Brown BT, Herbert RD, Maher CG, Hancock MJ. Risk of recurrence of low back pain: a systematic review. J Orthop Sports Phys Ther 2017; 47: 305–13.

48. Brinjikji W, Diehn FE, Jarvik JG, Carr CM, Kallmes DF, Murad MH, Luetmer PH. MRI Findings of Disc Degeneration are More Prevalent in Adults with Low Back Pain than in Asymptomatic Controls: A Systematic Review and Meta-Analysis. AJNR Am J Neuroradiol. 2015;36(12):2394-9.

49. Brinjikji W, Luetmer PH, Comstock B, Bresnahan BW, Chen LE, Deyo RA, Halabi S, Turner JA, Avins AL, James K, Wald JT, Kallmes DF, Jarvik JG. Systematic literature review of imaging features of spinal degeneration in asymptomatic populations.  AJNR Am J Neuroradiol. 2015;36(4):811-6.

50. Raastad J, Reiman M, Coeytaux R, Ledbetter L, Goode AP. The association between lumbar spine radiographic features and low back pain: a systematic review and meta-analysis. Semin Arthritis Rheum. 2015;44(5):571-585.

51. Wang YX. Postmenopausal Chinese women show accelerated lumbar disc degeneration compared with Chinese men. J Orthop Translat 2015;3:205–11.

52. Wang YX, Kaplar Z, Deng M, Leung JC. Lumbar degenerative spondylolisthesis epidemiology: A systematic review with a focus on gender-specific and age-specific prevalence. J Orthop Translat. 2016;11:39-52

53. Wang YX, Wang JQ, Kaplar Z. Increased low back pain prevalence in females than in males after menopause age: evidences based on synthetic literature review. Quant Imaging Med Surg

2016;6:199–206

54. Steffens D, Hancock MJ, Maher CG, et al. Does magnetic resonance imaging predict future low back pain? A systematic review. Eur J Pain 2014;18:755–65

55. Modic MT, Obuchowski NA, Ross JS, et al. Acute low back pain and radiculopathy: MR imaging findings and their prognostic role and effect on outcome. Radiology 2005;237:597-604.

56. Chou R, Fu R, Carrino JA, Deyo RA. Imaging strategies for low-back pain: systematic review and meta-analysis. Lancet. 2009;373:463-72.

57. Thompson KJ, Dagher AP, Eckel TS, Clark M, Reinig JW. Modic changes on MR images as studied with provocative diskography:clinical relevance–a retrospective study of 2457 disks. Radiology 2009;250(3):849—55.

58. Hancock MJ, Maher CG, Latimer J, et al. Systematic review of tests to identify the disc, SIJ or facet joint as the source of low back pain. Eur Spine J 2007; 16: 1539–50.

59. Weishaupt D, Zanetti M, Hodler J, Min K, Fuchs B, Pfirrmann CW,et al. Painful lumbar disk derangement: prelevance of endplateabnormalities at MR imaging. Radiology 2001;218(2):420—7.

60. Ract I, Meadeb JM, Mercy G, Cueff F, Husson JL, Guillin R. A review of the value of MRI signs in low back pain. Diagn Interv Imaging. 2015;96:239-49.

61. Ruiz Santiago F, Castellano García MM, Guzmán álvarez L, Tello Moreno M. Computed tomography and magnetic resonance imaging for painful spinal column: contributions and controversies. Radiologia. 2011;53(2):116-33.

62.  Friedrich KM, Nemec S, Peloschek P, Pinker K, Weber M, Trattnig S, et al. The prevalence of lumbar facet joint edema in patients with low back pain. Skeletal Radiol. 2007;36:755-60.

63. Fayad F, Lefevre-Colau MM, Drape JL, Feydy A, Chemla N, Quintero N, et al. Reliability of a modify ed Modic classifi cation of bone marrow changes in lumbar spine MRI. Joint Bone Spine.

2009;76:286-9.

64. Chung CB, Vande Berg BC, Tavernier T, Cotten A, Laredo JD, Vallee C, et al. End plate marrow changes in the asymptomatic lumbosacral spine: frequency, distribution and correlation with age and degenerative changes. Skeletal Radiol. 2004; 33:399-404.

65. Jensen RK, Leboeuf-Yde C, Wedderkopp N, et al. Is the development of Modic changes associated with clinical symptoms? A 14-month cohort study with MRI. Eur Spine J 2012;21:2271–79

66. Kjaer P, Korsholm L, Bendix T, Sorensen JS, Leboeuf-Y de C. Modic changes and their associations with clinical findings. Eur Spine J.2006;15:1312—9.

67. Kuisma M, Karppinen J, Niinimäki J, Ojala R, Haapea M, Heliövaara M, Korpelainen R, Taimela S, Natri A, Tervonen O. Modic changes in endplates of lumbar vertebral bodies: prevalence and association with low back and sciatic pain among middle-aged male workers. Spine (Phila Pa 1976). 2007;32(10):1116-22.

68. Määttä JH, Karppinen J, Paananen M, Bow C, Luk KD, Cheung KM, Samartzis D. Refined Phenotyping of Modic Changes: Imaging Biomarkers of Prolonged Severe Low Back Pain and Disability. Medicine (Baltimore). 2016 May;95(22):e3495.

69. Jensen TS, Bendix T, Sorensen JS, et al. Characteristics and natural course of vertebral endplate signal (Modic) changes in the Danish general population. BMC Musculoskelet Disord. 2009;10:81.

70. Määttä JH, Kraatari M, Wolber L, Niinimäki J, Wadge S, Karppinen J, Williams FM. Vertebral endplate change as a feature of intervertebral disc degeneration: a heritability study. Eur Spine J. 2014;23:1856–1862.

71. Mitra D, Cassar-Pullicino VN, McCall IW. Longitudinal study ofvertebral type-1 end-plate changes on MR of the lumbar spine. Eur Radiol 2004;14(9):1574—81.

72. Luoma K, Vehmas T, Kerttula L, Grönblad M, Rinne E. Chronic low back pain in relation to Modic changes, bony endplate lesions, and disc degeneration in a prospective MRI study. Eur Spine J. 2016 Sep;25(9):2873-81.

73. Urquhart DM, Zheng Y, Cheng AC, et al. Could low grade bacterial infection contribute to low back pain? A systematic review. BMC Med. 2015;13:13.

74. Dudli S, Liebenberg E, Magnitsky S, Miller S, Demir-Deviren S, Lotz JC. Propionibacterium acnes infected intervertebral discs cause vertebral bone marrow lesions consistent with Modic

changes. J Orthop Res 2016; 34: 1427–55.

75. Albert HB, Sorensen JS, Christensen BS, Manniche C. Antibiotic treatment in patients with chronic low back pain and vertebral bone edema (Modic type 1 changes): a double blind randomized clinical controlled trial of efficacy. Eur Spine J. 2013;22(4):697-707.

76. Crockett MT, Kelly BS, van Baarsel S, Kavanagh EC. Modic Type 1 Vertebral Endplate Changes: Injury, Inflammation, or Infection? AJR Am J Roentgenol. 2017;209(1):167-170.

77. Teh J, Iman A, Watts C. Imaging of back pain. Imaging. 2005; 17:171-207.

78. Stabler A, Bellan M, Weiss M, Gartner C, Brossmann J,Reiser MF. MR imaging of enhancing intraosseous disk herniation (Schmorl’s nodes). AJR Am J Roentgenol 1997;168(4):933—8.

79. Takahashi K, Miyazaki T, Ohnari H, Takino T, Tomita K. Schmorl’snodes and low-back pain. Analysis of magnetic resonance imaging findings in symptomatic and asymptomatic individuals. Eur Spine J 1995;4(1):56—9.

80. Mitra D, Cassar-Pullicino VN, McCall IW. Longitudinal study ofhigh intensity zones on MR of lumbar intervertebral discs. Clin Radiol 2004;59(11):1002—8.

81  Maas ET, Juch JN, Ostelo RW1, Groeneweg JG, Kallewaard JW, Koes BW, Verhagen AP, Huygen FJ, van Tulder MW. Systematic review of patient history and physical examination to diagnose chronic low back pain originating from the facet joints. Eur J Pain 2017; 21: 403–14.

82. Lakadamyali H, Tarhan NC, Ergun T, Cakir B, Agildere AM. STIR Sequence for Depiction of Degenerative Changes in Posterior Stabilizing Elements in Patients with Lower Back Pain. AJR Am J Roentgenol. 2008;191:973-9.

83. Rihn JA, Lee JY, Khan M, Ulibarri JA, Tannoury C, Donaldson WF, et al. Does lumbar facet fluid detected on magnetic resonance Imaging correlate with radiographic instability in patients with degenerative lumbar disease? Spine. 2007;32:1555-60.

84.- Manchikanti L, Benyamin RM, Singh V, Falco FJE, Hameed H, Derby R, et al. An Update of Comprehensive Evidence-Based Guidelines for Interventional Techniques in Chronic Spinal Pain. Part II: Guidance and Recommendations. Pain Physician 2013; 16:S49-S283

85, Borg B, Modic MT, Obuchowski N, Cheah G. Pedicle marrow signal hyperintensity on short tau inversion recovery- and t2-weighted images: prevalence and relationship to clinical symptoms. AJNR Am J Neuroradiol 2011;32(9):1624—31.

86. Sakai T, Sairyo K, Mima S, Yasui N. Significance of magnetic resonance imaging signal change in the pedicle in the management of pediatric lumbar spondylolysis. Spine (Phila Pa 1976); 2010:35(14):E641—5.

87. Bartynski WS, Petropoulou KA. The MR imaging features and clinical correlates in low back pain-related syndromes. Magn Reson Imaging Clin N Am. 2007;15:137-54.

88. Sirvanci M, Bhatia M, Ganiyusufoglu KA, Duran C, Tezer M, Ozturk C, et al. Degenerative lumbar spinal stenosis: correlation with Oswestry Disability Index and MR Imaging. Eur Spine J.

2008; 17:679-85.

89. Griffith JF, Huang J, Law SW, Xiao F, Leung JC, Wang D, Shi L. Population reference range for developmental lumbar spinal canal size. Quant Imaging Med Surg. 2016;6(6):671-679.

90. Lee S, Lee JW, Yeom JS, Kim KJ, Kim HJ, Chung SK, et al. A practical MRI grading system for lumbar foraminal stenosis. AJR Am J Roentgenol. 2010;194:1095-8.

91. Porter RW, Bewley B. A ten-year prospective study of vertebral canal size as a predictor of back pain. Spine. 1994;19:173-5.

92. Wilmink JT. CT morphology of intrathecal lumbosacral nerve-root compression. AJNR Am J Neuroradiol. 1989;10:233-48.

93. Tomkins-Lane C, Melloh M, Lurie J, et al. Consensus on the clinical diagnosis of lumbar spinal stenosis: results of an international Delphi study. Spine 2016; 41: 1239–46.

94. Chad DA. Lumbar spinal stenosis. Neurol Clin 2007; 25: 407–18.

95. Amundsen T, Weber H, Nordal HJ, Magnaes B, Abdelnoor M, Lilleas F. Lumbar spinal stenosis: conservative or surgical management? A prospective 10-year study. Spine (Phila Pa 1976). 2000;25(11):1424-1435; discussion 1435-1426.

96. Minamide A, Yoshida M, Maio K. The natural clinical course of lumbar spinal stenosis: a longitudinal cohort study over a minimum of 10 years. J Orthop Sci. 2013;18(5):693-698.

97. Micankova Adamova B, Vohanka S, Dusek L, Jarkovsky J, Bednarik J. Prediction of long-term clinical outcome in patients with lumbar spinal stenosis. Eur Spine J. 2012;21(12):2611-2619.

98.  Wang YX, Káplár Z, Deng M, Leung JCS. Lumbar degenerative spondylolisthesis epidemiology: A systematic review with a focus on gender-specific and age-specific prevalence. J Orthop Translat. 2016;11:39-52.

99. He LC, Wang YX, Gong JS, Griffith JF, Zeng XJ, Kwok AW, Leung JC, Kwok T, Ahuja AT, Leung PC. Prevalence and risk factors of lumbar spondylolisthesis in elderly Chinese men and women. Eur Radiol. 2014;24(2):441-8.

100. Ly JQ. Systema ic approach to interpretation of the lumbar spine MR imaging examination. Magn Reson Imaging Clin N Am. 2007; 15: 155-66.

101. Resnick D. Degenerative diseases of the vertebral column. Radiology. 1985;156:3-14.

102. Wáng YX, Deng M, Griffith JF, Kwok AW, Leung JC, Ahuja AT, Kwok T, Leung PC. Lumbar Spondylolisthesis Progression and De Novo Spondylolisthesis in Elderly Chinese Men and Women: A Year-4 Follow-up Study. Spine (Phila Pa 1976). 2016;41(13):1096-103.

103. North American Spine Society. Clinical guidelines for multidisciplinary spine care. Diagnosis and treatment of degenerative lumbar spondylolisthesis. Burr Ridge, USA: North American Spine Society; 2008.

104. Káplár Z, Wáng YX. South Korean degenerative spondylolisthesis patients had surgical treatment at earlier age than Japanese, American, and European patients: a published literature observation.  Quant Imaging Med Surg. 2016;6(6):785-790.

105. Lurie JD, Birkmeyer NJ, Weinstein JN. Rates of advanced spinal imaging and spine surgery. Spine (Phila Pa 1976). 2003;28:616-20.

106. Ash LM, Modic MT, Obuchowski NA, Ross JS, Brant-Zawadzki MN, Grooff PN. Effects of diagnostic information, per se, on patient outcomes in acute radiculopathy and low back pain. AJNR Am J Neuroradiol. 2008;29(6):1098-1103.

107. Kendrick D, Fielding K, Bentley E, Kerslake R, Miller P, Pringle M. Radiography of the lumbar spine in primary care patients with low back pain: randomised controlled trial. BMJ. 2001;322:400-5.

108. Rhodes LA, McPhillips-Tangum CA, Markham C, Klenk R. The power of the visible: the meaning of diagnostic tests in chronic back pain. Soc Sci Med. 1999;48:1189-203

109.Graves JM, Fulton-Kehoe D, Jarvik JG, Franklin GM. Health care utilization and costs associated with adherence to clinical practice guidelines for early magnetic resonance imaging

among workers with acute occupational low back pain. Health Serv Res. 2014;49(2):645-665.

110. Webster BS, Cifuentes M. Relationship of early magnetic resonance imaging for work-related acute low back pain with disability and medical utilization outcomes. J Occup Environ Med 2010; 52: 900-7

111. Wáng YXJ, Santiago FR, Deng M, Nogueira-Barbosa MH. Identifying osteoporotic vertebral endplate and cortex fractures. Quant Imaging Med Surg. 2017;7(5):555-591.

112. Ruiz Santiago F, Tomás Muñoz P, Moya Sánchez E, Revelles Paniza M, Martínez Martínez A, Pérez Abela AL. Classifying thoracolumbar fractures: role of quantitative imaging. Quant Imaging Med Surg. 2016 Dec;6(6):772-784.

113. Jung HS, Jee WH, McCauley TR, et al. Discrimination of metastatic acute osteoporotic compression spinal fractures with MR Imaging. Radiographics 2003; 23: 179-187.

114. Tann SB, Kozak JA, Mawad ME. The limitations of magnetic resonance imaging in the diagnosis of pathologic vertebral fractures. Spine 1991; 16(8):919-923.

115. Leone A, Guglielmi G, Cassar-Pullicino VN, Bonomo L. Lumbar Intervertebral Instability: A Review. Radiology. 2007; 245:62-77.

116. Fazel R, Krumholz HM, Wang Y, Ross JS, Chen J, Ting HH, et al. Exposure to low-dose ionizing radiation from medical imaging procedures.  N Engl J Med. 2009;361:849-57.

117. Crownover BK, Bepko JL. Appropriate and safe use of diagnostic imaging. Am Fam Physician. 2013 Apr 1;87(7):494-501.

118. Kobayashi A, Kobayashi T, Kato K, Higuchi H, Takagishi K. Diagnosis of radiographically occult lumbar spondylolysis in young athletes by magnetic resonance imaging. Am J Sports Med 2013;41:169-76

119. Stochkendahl MJ, Kjaer P, Hartvigsen J, et al. National clinical guidelines for non-surgical treatment of patients with recent onset low back pain or lumbar radiculopathy. Eur Spine J 2018; 27: 60–75.

120. Bernstein I A, Malik Q, Carville S, et al. Low back pain and sciatica: summary of NICE guidance. BMJ, 2017, 356:i6748.

121. Qaseem A, Wilt TJ, McLean RM, Forciea MA, Clinical Guidelines Committee of the American College of Physicians. Noninvasive treatments for acute, subacute, and chronic low back pain: a clinical practice guideline from the American College of Physicians. Ann Intern Med 2017; 166: 514−30

122. Foster N E, Anema J R, Cherkin D, et al. Prevention and treatment of low back pain: evidence, challenges, and promising directions.[J]. Lancet, 2018

123. Mathieson S, Maher CG, McLachlan AJ, et al. Trial of pregabalin for acute and chronic sciatica. N Engl J Med 2017; 376: 1111−20.

124. Sekiguchi M, Kikuchi S. Efficacy of pregabalin in patients with sciatica: a randomized, double-blind, placebo controlled trial. AME Med J 2017;2:83

125. Armon C, Argoff CE, Samuels J, Backonja MM, for the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Assessment: use of epidural steroid injections to treat radicular lumbosacral pain. Neurology. 2007;68(10):723-729.

126. Manchikanti L, Benyamin RM, Falco JJE, Kaye AD, Hirsch JA. Do Epidural Injections Provide Short- and Long-term Relief for Lumbar Disc Herniation? A Systematic Review. Clin Orthop Relat Res. 2015;473:1940---56.

127. DePalma MJ, Slipman CW. Evidence-informed management of chronic low back pain with epidural steroid injections. Spine J. 2008;8(1): 45-55.

128. Chou R, Hashimoto R, Friedly J, et al. Epidural corticosteroid injections for radiculopathy and spinal stenosis: a systematic review and meta-analysis. Ann Intern Med 2015; 163: 373−81    

129. Jacobs WC, van Tulder M, Arts M, et al. Surgery versus conservative management of sciatica due to a lumbar herniated disc: a systematic review. Eur Spine J. 2011;20(4):513-522.

130 Weinstein JN, Tosteson TD, Lurie JD, Tosteson A, Blood E, Herkowitz H, Cammisa F, Albert T, Boden SD, Hilibrand A, Goldberg H, Berven S, An H. Surgical versus nonoperative treatment for lumbar spinal stenosis four-year results of the Spine Patient Outcomes Research Trial. Spine (Phila Pa 1976). 2010 ;35(14):1329-38.

131. Forsth P, Olafsson G, Carlsson T, Frost A, Borgstrom F, Fritzell P, et al. A randomized, controlled trial of fusion surgery for lumbar spinal stenosis. New England Journal of Medicine 2016; 374: 1413–23. 

132. Ghogawala Z, Dziura J, Butler WE, Dai F, Terrin N, Magge SN, et al. Laminectomy plus fusion versus laminectomy alone for lumbar spondylolisthesis. New England Journal of Medicine 2016; 374: 1424–34

133. Wu AM, Tong TJ, Wang XY. A rethink of fusion surgery for lumbar spinal stenosis. Journal of Evidence-Based Medicine. 2016; 9(4):166-69;



    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多