注:以上文章来源:http://www./,如若侵权,请告知删除。 福建省2018届高中毕业班数学学科备考关键问题指导系列之八 平面向量 平面向量是高中数学的重要内容,也是高考考查的重要内容之一。高考对这部分的考查常以选择、填空的形式出现,也常与解析几何交汇,题型较稳定,属中档题。平面向量既有代数形式又有几何形式,作为工具的应用,它给平面解析几何奠定了必要的基础。平面向量在高考中主要包含以下几个考点:1)在平面几何图形中主要考查向量加法的平行四边形法则及加减法的三角形法则;2)对共线向量定理的应用,主要考查应用向量的坐标运算求向量的模;3)应用平面向量基本定理进行向量的线性运算;4)应用向量的垂直与共线条件,求解参数;5)对平面向量数量积的运算、化简,向量平行与垂直的充要条件的应用,并以平面向量的数量积为工具,考查其综合应用性问题,常与三角函数、解析几何等相结合。另外,空间向量是平面向量的延伸,本文主要研究平面向量,下面我将对学生存在的主要问题进行剖析,并提出相应的教学对策。 一、存在的问题及原因分析 问题(一). 不能准确理解向量的相关概念 概念不清主要表现在向量的概念,平行向量、单位向量的概念;向量夹角的概念等。 问题(二)运算理解不到位,不能合理选择算法 学生存在的主要问题是:(1)对向量运算理解不到位,比如会错把数的乘法的消去律运用在向量的数量积运算上;(2)算法选择不合理,学生往往选择常规解法,导致过繁运算,计算量过大,甚至无法解答下去。只有熟练掌握向量的运算技巧,根据题设条件合理选择算法,才能达到正确运算的目的。 问题(三). 不能等价转换向量问题 学生主要问题体现在:题设条件问题转换不等价,在平时复习中,关注学生对相关概念、定理、公式等的本质的挖掘与掌握至关重要。 问题(四). 不能合理选择基底 学生主要问题体现在:不能合理选择基底解决问题,原因是学生对于平面向量基本定理并没有真正理解,所以在复习中,深刻理解平面向量基本定理,让学生真正掌握定理的本质及解决问题的技巧是关键。 问题(五). 不能合理运用向量解决问题 考查向量语言,体现向量的的工具性,解决平行与垂直的问题,与三角函数和解析几何的交汇是高考常见题型,学生的主要问题就是缺乏用向量解决问题的意识,导致运算量过大,甚至无法解答下去,因此,在复习中教师应重视向量在这方面的运用指导,引导学生拓展思路,必定会有意想不到的神奇效果。 评析:本题主要考查三角诱导公式,二倍角公式,余弦定理以及应用平面向量解决问题的意识。对于第(Ⅱ)问,题中未出现平面向量,如果按照常规思路,只会想到正、余弦定理及方程思想,则运算量较大,导致解题速度慢或出错.但如果学生有主动运用平面向量的意识, 可使代数问题向量化——充分体现向量的工具性、桥梁作用,会大大减少运算量,从而轻松解决问题,体现了不同层次学生的思维能力. 二、平面向量复习的思考与对策 1.加强概念学习,注重本质理解 在平面向量的概念复习中,如何让学生迅速把握住本质,达成理解?重温概念的来龙去脉,理清知识网络,通过比较,对向量的概念进行辨析,在此基础上,抓住向量的两个要素:大小、方向进行拓展,将向量概念精准化.学生存在的问题之一是:概念不清,符号表示混乱,针对此问题,一方面教师在板书、表达等方面一定要准确和多方强调,另一方面,也可设置一些判断题,帮助学生辨析概念. 2.加强运算训练,关注算法选择 单纯看向量的运算,实际上是比较抽象的.在复习中若能恰当运用模型,运用类比,不仅可以降低难度,而且对于学生认识抽象的运算有很大的好处:比如说:向量这个概念源于物理中的力、位移,那么力的合成、位移的合成实际上就是向量加法的模型,依此为基础很容易理解并记忆平行四边形法则和三角形法则。而向量的减法则可类比于数的减法定义:在实数运算中,减法是加法的逆运算;于是向量的减法也可以看成是向量加法的逆运算;在实数运算中,减去一个数,等于加上这个数的相反数。据此,复习相反向量的概念。要注意向量运算与实数运算的差异,抓住“结果是什么?”“遵循什么样的运算律?”等问题,在类比和辨析中掌握知识。逐渐渗透在集合上定义二元运算的准则.自然形成对于“逆运算”、“逆元”等概念的了解.最终拓展学生对于运算的认识. 3.重视几何特征,关注数形结合 在“平面向量”的复习教学中,数形结合是重要的思想方法之一,理解向量线性运算的几何意义更是本专题的教学目标之一,但学生往往不能做到恰当转化.数形结合的关键是把握基本量的代数形式与几何特征之间的联系,一方面复习中要时刻注意二者的联系和相互表达,学会“看图说话”,另一方面也可选择恰当的例题,对某些几何特征量进行归纳,逐渐学会“由数到形”.每种运算都要注意从几何和代数两个方面进行解读,两者并重。但要真正掌握、运用这种思想方法,还需对数和形的实质加以挖掘.比如“向量的加法”复习中,可从“位移的合成”引入三角形法则,这是向量加法的几何法则,将其代数化,就得到: 4.重视方法训练,关注基底选择 通过本专题的复习,研究用向量处理问题的两种方法:“向量法”和“坐标法”.也即面对一个实际问题,要学会选择基底或者建立平面直角坐标系.本质上这两种方法是统一的,其依据都是“平面向量基本定理”,后者是前者的特例.学生往往对于后者较为熟悉,在给定的坐标系中会处理问题,但不善于自己选择基底.事实上,这种熟悉,对于很多学生来说:只是一种简单的模仿和运算,而对于平面向量基本定理并没有真正理解。但课标对于平面向量基本定理的要求,只限于“了解”。因此,若学生程度较好,可在正交基底的基础上,引导学生选择其它的基底解决问题,强化平面向量基本定理的教学. 5.强化问题意识,注重向量运用 学生的主要问题就是缺乏用向量解决问题的意识,学生处理问题的意识不是一朝一夕形成的,教师要在教学中积极引导学生自觉地思考、转化、构图和变式,让学生不断积累思维和活动经验,要加强教学过程中对学生思维、意识和能力的培养,注重过程强化,关注解题过程的思维达成度,培养学生的悟性。 三、典型问题剖析 高考对平面向量的考查重点放在平面向量的基本概念、基本运算及其几何意义。主要以选择填空题的形式出现,有时解答题的题设条件也以向量的形式给出,命题的出发点主要是以平面图形为载体表达平面向量,借助向量表达相交或共线等问题,借助平面几何、解析几何等知识,考查线性运算法则及其几何意义以及两个向量共线的充要条件,或以向量为载体秋参数的值。 1.平面向量的概念及线性表示 2.平面向量基本定理及坐标运算 3.平面向量的数量积 4.平面向量的平行与垂直 |
|
来自: 昵称47813312 > 《高中数学》