【实验目的】 输出7路占空比不同的PWM信号是各个版本ST库必备的例子。本实验的主要目的不是表现ST芯片PWM功能的强大,而是要完成输出的精确计算。 【实验内容】 输出7路PWM信号,并用示波器测量输出。 【实验原理】 1、时基单元初始化 TIM1和TIM8使用内部时钟时,时钟由APB2提供。但是定时器的时钟并不是直接由APB2提供,而是来自于输入为APB2的一个倍频器。当APB2的与分频系数为1时,这个倍频器不起作用,定时器时钟频率等于APB2时钟。当APB2预分频系数为其他时这个倍频器起作用。定时器的输入频率等于APB2的2倍。本实验中,APB2时钟被设置成了84M是对系统时钟进行2分频。因此定时器的输入时钟是84M×2 = 168M = SYSCLK。(PS:这个倍频我在ST的手册上边没有找到,是网上搜索得到的结果,与实际结果对比是正确的) TIM_Prescaler 为预分频值,为0时分频系数为1. TIM_Period 为每个周期计数值,从0开始计数所以其值应为计数次数减去1。 TIM_RepetitionCounter是F4新增的一个东西,只有高级定时器TIM1和TIM8有效,对应寄存器RCR。意思就是每TIM_RepetitionCounter+1个技术周期产生一次中断。 我定义的时基如下,将产生频率为20K的即使基准: TimerPeriod = (SystemCoreClock / 20000 ) - 1; RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1,ENABLE); //时基初始化 TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1; //死区控制用。 TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up; //计数器方向 TIM_TimeBaseInitStructure.TIM_Prescaler = 0; //Timer clock = sysclock /(TIM_Prescaler+1) = 168M TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0; TIM_TimeBaseInitStructure.TIM_Period = TimerPeriod - 1; //Period = (TIM counter clock / TIM output clock) - 1 = 20K TIM_TimeBaseInit(TIM1,&TIM_TimeBaseInitStructure);
2、计时输出 ccr1、2、3、4为各个技术周期的TIM_Pulse。即每当计数到这些个值的时候,PWM波形就会反转。 ccr1 = TimerPeriod / 2; //占空比1/2 = 50% ccr2 = TimerPeriod / 3; //占空比1/3 = 33% ccr3 = TimerPeriod / 4; //占空比1/4 = 25% ccr4 = TimerPeriod / 5; //占空比1/5 = 20%
定义输出部分: TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable; TIM_OCInitStructure.TIM_Pulse = ccr1; TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; TIM_OCInitStructure.TIM_OCNPolarity = TIM_OCNPolarity_Low;//输出同相,TIM_OCNPolarity_High时输出反相 TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Set; TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCNIdleState_Reset; TIM_OC1Init(TIM1,&TIM_OCInitStructure); TIM_OCInitStructure.TIM_Pulse = ccr2; TIM_OC2Init(TIM1,&TIM_OCInitStructure);
TIM_OCInitStructure.TIM_Pulse = ccr3; TIM_OC3Init(TIM1,&TIM_OCInitStructure);
TIM_OCInitStructure.TIM_Pulse = ccr4; TIM_OC4Init(TIM1,&TIM_OCInitStructure); TIM_Cmd(TIM1,ENABLE); TIM_CtrlPWMOutputs(TIM1,ENABLE);
3、到这里就完成了定时器的配置,下边是GPIO引脚的配置 使用GPIOE的8、9、10、11、12、13、14引脚进行PWM输出。配置如下: void TIM1_GPIO_Config(void) { //PE 8 9 10 11 12 13 14输出 GPIO_InitTypeDef GPIO_InitStructure; RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOE,ENABLE); GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT; GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8 | GPIO_Pin_9 | GPIO_Pin_10 | GPIO_Pin_11 | GPIO_Pin_12 | GPIO_Pin_13 | GPIO_Pin_14; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz; GPIO_Init(GPIOE,&GPIO_InitStructure);
GPIO_PinAFConfig(GPIOE,GPIO_PinSource8,GPIO_AF_TIM1); GPIO_PinAFConfig(GPIOE,GPIO_PinSource9,GPIO_AF_TIM1); GPIO_PinAFConfig(GPIOE,GPIO_PinSource10,GPIO_AF_TIM1); GPIO_PinAFConfig(GPIOE,GPIO_PinSource11,GPIO_AF_TIM1); GPIO_PinAFConfig(GPIOE,GPIO_PinSource12,GPIO_AF_TIM1); GPIO_PinAFConfig(GPIOE,GPIO_PinSource13,GPIO_AF_TIM1); GPIO_PinAFConfig(GPIOE,GPIO_PinSource14,GPIO_AF_TIM1); } 输出波形图: 同相输出时候: OC1/OC1N  OC2/OC2N  OC3/OC3/N  OC4  反相输出 OC1/OC1N  OC2/OC2N  OC3/OC3/N  OC4  完整的应用代码: 使用时只主要两行即可 //主函数调用 TIM1_GPIO_Config(); Tim1_Config(); //定时器输出引脚初始化 void TIM1_GPIO_Config(void) { //PE 8 9 10 11 12 13 14输出 GPIO_InitTypeDef GPIO_InitStructure; RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOE,ENABLE); GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF; GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8 | GPIO_Pin_9 | GPIO_Pin_10 | GPIO_Pin_11 | GPIO_Pin_12 | GPIO_Pin_13 | GPIO_Pin_14; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz; GPIO_Init(GPIOE,&GPIO_InitStructure); GPIO_PinAFConfig(GPIOE,GPIO_PinSource8,GPIO_AF_TIM1); GPIO_PinAFConfig(GPIOE,GPIO_PinSource9,GPIO_AF_TIM1); GPIO_PinAFConfig(GPIOE,GPIO_PinSource10,GPIO_AF_TIM1); GPIO_PinAFConfig(GPIOE,GPIO_PinSource11,GPIO_AF_TIM1); GPIO_PinAFConfig(GPIOE,GPIO_PinSource12,GPIO_AF_TIM1); GPIO_PinAFConfig(GPIOE,GPIO_PinSource13,GPIO_AF_TIM1); GPIO_PinAFConfig(GPIOE,GPIO_PinSource14,GPIO_AF_TIM1); } //TIM1做PWM输出 void Tim1_Config(void) { TimerPeriod = (SystemCoreClock / 20000 ) - 1; ccr1 = TimerPeriod / 2; //占空比1/2 = 50% ccr2 = TimerPeriod / 3; //占空比1/3 = 33% ccr3 = TimerPeriod / 4; //占空比1/4 = 25% ccr4 = TimerPeriod / 5; //占空比1/5 = 20% RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1,ENABLE); //时基初始化 TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1; //死区控制用。 TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up; //计数器方向 TIM_TimeBaseInitStructure.TIM_Prescaler = 0; //Timer clock = sysclock /(TIM_Prescaler+1) = 168M TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0; TIM_TimeBaseInitStructure.TIM_Period = TimerPeriod - 1; //Period = (TIM counter clock / TIM output clock) - 1 = 20K TIM_TimeBaseInit(TIM1,&TIM_TimeBaseInitStructure); TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable; TIM_OCInitStructure.TIM_Pulse = ccr1; TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; TIM_OCInitStructure.TIM_OCNPolarity = TIM_OCPolarity_High; TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Set; TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCNIdleState_Reset; TIM_OC1Init(TIM1,&TIM_OCInitStructure); TIM_OCInitStructure.TIM_Pulse = ccr2; TIM_OC2Init(TIM1,&TIM_OCInitStructure); TIM_OCInitStructure.TIM_Pulse = ccr3; TIM_OC3Init(TIM1,&TIM_OCInitStructure); TIM_OCInitStructure.TIM_Pulse = ccr4; TIM_OC4Init(TIM1,&TIM_OCInitStructure); TIM_Cmd(TIM1,ENABLE); TIM_CtrlPWMOutputs(TIM1,ENABLE); }
|