圆锥曲线中的最值问题 圆锥曲线中的最值问题是高考中的热点问题,常涉及不等式、函数的值域问题,综合性比较强,解法灵活多变,但总体上主要有两种方法: 一是利用几何方法,即利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解; 二是利用代数方法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解. 方法一:利用几何方法求最值 方法二 建立目标函数求最值 当题目中给出的条件和结论的几何特征不明显,则可以建立目标函数,再求这个函数的最值.求函数最值的常用方法有配方法、判别式法、单调性法、三角换元法等. |
|