云师堂 / 高中数学试题... / 第一百五十四夜 切线斜率与割线斜率

0 0

   

第一百五十四夜 切线斜率与割线斜率

原创
2019-11-10  云师堂

对导数而言,切线是无法回避的重点。

切线是导数的背景,而切线源自割线,是割线的极限形式,故切线与割线的关系便成为命题者不可多得的素材。

以下便是一道关于切线斜率与割线斜率大小关系的试题,不妨试试。


一·围观:一叶障目,抑或胸有成竹

题目并列式设问,第一问,已知极值情况求参数的取值范围,题型常规,难度适中;第二问,比较函数图象上两点割线斜率与中点切线斜率的大小,作差构造函数或著名不等式放缩皆可。

二·套路:手足无措,抑或从容不迫



  三·脑洞:浮光掠影,抑或醍醐灌顶

本题考查导数的应用,涉及函数的单调性、函数的极值、不等式的证明等知识点,综合考查整体与部分的思想、转化与划归的思想,属于难题。

比较大小常用的方法有作差与作商,当然也可以借助著名不等式进行放缩。

1,作差,然后对数单身狗,然后齐次化,然后换元构造辅助函数,通过辅助函数的单调性得出结论。

2,对数平均不等式(A-L-G不等式),单刀直入,唾手可得。

无论是法1,还是法2中的x1小于x2都并非是必要的,仅仅是为了表述方便。

想必你已为对数平均不等式的魔幻而顶礼膜拜,为什么会这样呢?

原因在于对数平均数已然含有斜率的思想。

本题看似平淡无奇,实则匠心独具。它源自于沟通切线斜率与割线斜率的桥梁——拉格朗日中值定理。

如果更进一步,还可得到如下定理:


四·操作:行同陌路,抑或一见如故


夜,那么长,以数学疗人寂寞,不是修行,就是罪过。

叨叨

2019.11.7

    猜你喜欢

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多
    喜欢该文的人也喜欢 更多