TangMouXiong / 初中 / UC头条:初中数学教科书要改了? 一元二次...

0 0

   

UC头条:初中数学教科书要改了? 一元二次方程有了极简解法

2019-12-13  TangMouXi...

你是否还记得上面的公式是什么?没错,它就是初中生必须掌握的一元二次方程的求解公式。

相信很多初中生在学习它的时候都很痛苦,因为这个公式实在有点难记。即使你到今天能够记得,还能回忆起当初的推导过程吗?

这个公式可能真的不太适合初学者。来自CMU数学系的副教授,同时也是美国奥数国家队教练的罗博深也注意到了这一点,他在博客中提出了一种更容易学会的求解方法。

打开UC浏览器 查看更多精彩图片

罗博深一直致力于中学生的数学教育,在他的指导下,美国分别获得了国际奥林匹克数学竞赛(IMO)2015、2016、2018和2019年的冠军。

下面让我们来看看他是如何求解的。

打开UC浏览器 查看更多精彩图片

一元二次方程的一般形式为ax2+bx+c=0,为了简化起见,不妨令a=1。(即使不等于1,也可以两边同时除以a)

x2+Bx+C=0

假设这个方式的两个解(或者叫根)分别是R和S,那么

x2+Bx+C = (x-R)(x-S) = 0

将右边的式子展开:

x2+Bx+C = x2-(R+S)x+RS

两边的对应系数应该相等:

B=-(R+S); C=RS

所以R和S的和应该等于-B,它俩的平均数就是-B/2,我们可以令这两数等于-B/2±z,而R和S的乘积又等于C,所以(-B/2+z)(-B/2-z)=C,即:

打开UC浏览器 查看更多精彩图片

在上一步里,我们用到了平方差公式。上面的方程很容易求z:

打开UC浏览器 查看更多精彩图片

所以方程的解是:

打开UC浏览器 查看更多精彩图片

这个公式不需要记,罗博深教授希望你记下来的是求解过程。我们先来举个例子:

x2-2x-24=0

根据上面的求解过程,我们可以知道这两个解之和为2,因此我们可以假设它们分别是1+z和1-z,他们的乘积是-24:

(1+z)(1-z)=1-z2=-24

所以

z2=25 → z=±5

因此方程的两个解分别是1+5=6和1-5=-4。这种方法还适用于根是虚数的情况。

打开UC浏览器 查看更多精彩图片

教材介绍的解一元二次方程共有四种方法:直接开平方法,配方法,公式法,因式分解法。四种解法各有千秋,因题而异。针对方程特点灵活选择是提高解一元二次方程能力的基本保证。现对各种解法作一小结,供同学们对比学习。

打开UC浏览器 查看更多精彩图片
打开UC浏览器 查看更多精彩图片
打开UC浏览器 查看更多精彩图片
打开UC浏览器 查看更多精彩图片
打开UC浏览器 查看更多精彩图片

罗博深指出,课本上的方法是从古人流传下来的,可古人知道方程组如何求解,却在很长一段时间都不知道一元二次方程解的标准形式。因此教科书里的方法显然更不易被理解。同学们觉得那种解法更容易理解呢?

打开UC浏览器 查看更多精彩图片

一元二次方程,在初中数学中的地位是不言而喻的,在每年的中考中也是占了非常大的比例,会解一元二次方程是初中生必须要掌握的内容,学习哥给同学们准备了一些试题,大家可以利用今天的新方法或教材里面讲到的方法做一做。

打开UC浏览器 查看更多精彩图片
打开UC浏览器 查看更多精彩图片
打开UC浏览器 查看更多精彩图片
打开UC浏览器 查看更多精彩图片

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。如发现有害或侵权内容,请点击这里 或 拨打24小时举报电话:4000070609 与我们联系。

    猜你喜欢

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多
    喜欢该文的人也喜欢 更多