如图1,线段AB=12厘米,动点P从点A出发向点B运动,动点Q从点B出发向点A运动,两点同时出发,到达各自的终点后停止运动.已知动点Q运动的速度是动点P运动的速度的2倍.设两点之间的距离为s(厘米),动点P的运动时间为t(秒),图2表示s与t之间的函数关系. (1)求动点P、Q运动的速度; (2)图2中,a= ,b= ,c= ; (3)当a≤t≤c时,求s与t之间的函数关系式(即线段MN对应的函数关系式). 考点分析: 动点问题的函数图象. 题干分析: (1)设动点P运动的速度为x厘米/秒,则动点Q运动的速度为2x厘米/秒,根据图象可知经过2秒两点之间的距离为0,即经过2秒两点相遇.根据相遇时,两点运动的路程之和=12厘米列出方程,求解即可; (2)根据图象可知,a的值为动点Q从点B运动到点A的时间,根据时间=路程÷速度列式求出a=3;b的值为动点P运动3秒时的路程,根据路程=速度×时间列式求解;c的值为动点P从点A运动到点B的时间,根据时间=路程÷速度列式求解; (3)当3≤t≤6时,设s与t之间的函数关系式为s=kt+b,将(3,6),(6,12)代入,利用待定系数法即可求解. 解题反思: 本题考查了动点问题的函数图象,路程、速度与时间的关系,待定系数法求一次函数的解析式等知识点.解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程. |
|