典型例题分析1: 如图,在平面直角坐标系xOy中,A、B为x轴上两点,C、D为y轴上的两点,经过点A、C、B的抛物线的一部分c1与经过点A、D、B的抛物线的一部分c2组合成一条封闭曲线,我们把这条封闭曲线成为“蛋线”.已知点C的坐标为(0,3/2),点M是抛物线C2:y=mx2﹣2mx﹣3m(m<0)的顶点. (1)求A、B两点的坐标; (2)“蛋线”在第四象限上是否存在一点P,使得△PBC的面积最大?若存在,求出△PBC面积的最大值;若不存在,请说明理由; (3)当△BDM为直角三角形时,求m的值. 


 已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.


 初中数学函数知识主要覆盖到这三种函数:一次函数(包括正比例函数)、反比例函数、二次函数。而其中最为重要的就是二次函数,纵观全国各地很多中考试卷,我们都会发现绝大部分压轴题都和二次函数密切相关,要那么就是与二次函数相关的函数综合问题,或是函数与几何结合综合性问题等等。因此,很多人都会说,要想考取中考高分,首先要过二次函数的关卡。话或许有些夸张,但这也突出二次函数的重要性。对于初中三种函数来说,二次函数可以说是初中数学当中最为复杂的函数,学好二次函数是我们能很好攻克中考数学压轴题的前提,大家一定要好好的掌握。
|