分享

【中考数学课堂】第959课:圆有关的解答题讲解分析

 中考数学宝典 2020-09-03

典型例题分析1:

如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD,垂足为E,DA平分∠BDE.

(1)求证:AE是⊙O的切线;

(2)若∠DBC=30°,DE=1cm,求BD的长.

∵DA平分∠BDE,
∴∠BDA=∠EDA.
∵OA=OD,
∴∠ODA=∠OAD,
∴∠OAD=∠EDA,
∴OA∥CE.
∵AE⊥CE,
∴AE⊥OA.
∴AE是⊙O的切线.
(2)解:∵BD是直径,
∴∠BCD=∠BAD=90°.
∵∠DBC=30°,∠BDC=60°,
∴∠BDE=120°.
∵DA平分∠BDE,
∴∠BDA=∠EDA=60°.
∴∠ABD=∠EAD=30°.
∵在Rt△AED中,∠AED=90°,∠EAD=30°,
∴AD=2DE.
∵在Rt△ABD中,∠BAD=90°,∠ABD=30°,
∴BD=2AD=4DE.
∵DE的长是1cm,
∴BD的长是4cm.
考点分析:
切线的判定;圆周角定理.
题干分析:
(1)连接OA,根据角之间的互余关系可得∠OAE=∠DEA=90°,故AE⊥OA,即AE是⊙O的切线;
(2)根据圆周角定理,可得在Rt△AED中,∠AED=90°,∠EAD=30°,有AD=2DE;在Rt△ABD中,∠BAD=90°,∠ABD=30°,有BD=2AD=4DE,即可得出答案.

典型例题分析2:
(1)如图1,已知AD=BC,AC=BD.求证:△ADB≌△BCA.
(2)如图2,已知AB是⊙O的一条直径,延长AB至点C,使AC=3BC,CD与⊙O相切于点D,若CD=√3,求⊙O的半径.

考点分析:
切线的判定与性质;KD:全等三角形的判定与性质.
题干分析:
(1)根据全等三角形的判定即求证;
(2)连接OD,利用AC=3BC可知OB=OC/2,在Rt△ODC中,cos∠DOC=OD/OC=1/2,从而可知∠DOC=60°,∠AOD=120°,在Rt△POC中,利用勾股定理即可求出OD的长度.

典型例题分析3:
⊙O是△ABC的外接圆,AB是直径,过弧BC的中点P作⊙O的直径PG,与弦BC相交于点D,连接AG、CP、PB.
(1)如图1,求证:AG=CP;
(2)如图2,过点P作AB的垂线,垂足为点H,连接DH,求证:DH∥AG;
(3)如图3,连接PA,延长HD分别与PA、PC相交于点K、F,已知FK=2,△ODH的面积为2√21,求AC的长.

考点分析:
圆的综合题.
题干分析:
(1)利用等弧所对的圆周角相等即可求解;
(2)利用等弧所对的圆周角相等,得到角相等∠APG=∠CAP,判断出△BOD≌△POH,再得到角相等,从而判断出线平行;
(3)由三角形相似,得出比例式,△HON∽△CAM,OH/AC=HN/CM,再判断出四边形CDHM是平行四边形,最后经过计算即可求解.
解题反思:
此题是圆的综合题,主要考查了相似,圆中的一些角的关系,解本题的关键是判断出平行线,难点是作辅助线.

    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多