分享

华西医院:抗性淀粉摄入或可缓解风湿性关节炎 | 热心肠日报

 mingxiaozi 2020-11-25

Resistant starch intake alleviates collagen-induced arthritis in mice by modulating gut microbiota and promoting concomitant propionate production

抗性淀粉的摄入通过调节肠道微生态、促进丙酸盐的产生来减轻胶原诱导的关节炎

10.1016/j.jaut.2020.102564

11-14, Article

Abstract & Authors:展开

Abstract:收起
Gut dysbiosis precedes clinic symptoms in rheumatoid arthritis (RA) and has been implicated in the initiation and persistence of RA. The early treatment of RA is critical to better clinical outcome especially for joint destruction. Although dietary interventions have been reported to be beneficial for RA patients, it is unclear to whether diet-induced gut microbiome changes can be a preventive strategy to RA development. Here, we investigated the effect of a high fiber diet (HFD) rich with resistant starch (RS) on collagen-induced arthritis (CIA) and gut microbial composition in mice. RS-HFD significantly reduced arthritis severity and bone erosion in CIA mice. The therapeutic effects of RS-HFD were correlated with splenic regulatory T cell (Treg) expansion and serum interleukin-10 (IL-10) increase. The increased abundance of Lactobacillus and Lachnoclostridium genera concomitant with CIA were eliminated in CIA mice fed the RS-HFD diet. Notably, RS-HFD also led to a predominance of Bacteroidetes, and increased abundances of Lachnospiraceae_NK4A136_group and Bacteroidales_S24-7_group genera in CIA mice. Accompanied with the gut microbiome changes, serum levels of the short-chain fatty acid (SCFA) acetate, propionate and isobutyrate detected by GC-TOFMS were also increased in CIA mice fed RS-HFD. While, addition of β-acids from hops extract to the drinking water of mice fed RS-HFD significantly decreased serum propionate and completely eliminated RS-HFD-induced disease improvement, Treg cell increase and IL-10 production in CIA mice. Moreover, exogenous propionate added to drinking water replicated the protective role of RS-HFD in CIA including reduced bone damage. The direct effect of propionate on T cells in vitro was further explored as at least one mechanistic explanation for the dietary effects of microbial metabolites on immune regulation in experimental RA.Taken together, RS-HFD significantly reduced CIA and bone damage and altered gut microbial composition with concomitant increase in circulating propionate, indicating that RS-rich diet might be a promising therapy especially in the early stage of RA.

First Authors:
Yunqiang Bai,Yanhong Li

Correspondence Authors:
Yubin Luo 

All Authors:
Yunqiang Bai,Yanhong Li,Tony Marion,Yanli Tong,Mario Zaiss,Zhigang Tang,Qiuping Zhang,Yi Liu,Yubin Luo

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章