分享

【外微分浅谈】7. 有力的计算

 taotao_2016 2021-02-13

这里我们将展示上面一节的方法对于计算黎曼曲率张量的计算是多少的有力!我们再次列出我们得到的所有公式。首先是概念式的
ωμ=hμαdxαdr=ˆeμωμds2=ημνωμων⟨ˆeμ,ˆeν⟩=ημν


然后是
dημν=ωνμ+ωμν=ηναωαμ+ημαωανdωμ+ωμν∧ων=0

这两个可以帮助我们确定ωμν;接着就是
Rμν=dωμν+ωμα∧ωαν

最后你要正交标架下的ˆRμνβγ,就要写出:
Rμν=∑β<γˆRμνβγωβ∧ωγ

如果你要原始标架下的Rμνβγ,就要写出
(h−1)μμ′Rμ′ν′hν′ν=∑β<γRμνβγdxβ∧dxγ

然后依次读出Rμνβγ,就像制表一样。

二维的例子:球面 #

先用一个二维的例子来热身,我们来计算球面ds2=dθ2+sin2θdϕ2的黎曼曲率张量。

我们取
ω1=dθ,ω2=sinθdϕ


也就是
h=(100sinθ),η=(1001)

由于η是单位阵,因此dημν=ηανωαμ+ημαωαν告诉我们,ωμν是反对称矩阵。我们用矩阵的形式写出dωμ+ωμν∧ων=0
(0ω12−ω120)∧(dθsinθdϕ)=−d(dθsinθdϕ)=−(0cosθdθ∧dϕ)

由于反对称性,ωμν只有一个独立分量,不难发现ω12=−cosθdϕ。这个求解过程,用猜测、试探的方法就行了。接着,求Rμν=dωμν+ωμα∧ωαν,即
Rμν=d(0−cosθdϕcosθdϕ0)+(0−cosθdϕcosθdϕ0)∧(0−cosθdϕcosθdϕ0)

最后矩阵相乘一项显然为0,事实上也可以证明只要在2维空间中就有ωμα∧ωαν恒等于0,因此
Rμν=d(0−cosθdϕcosθdϕ0)=(0sinθdθ∧dϕ−sinθdθ∧dϕ0)

又因为
Rμν=∑β<γˆRμνβγωβ∧ωγ=ˆRμν12sinθdθ∧dϕ

对比即知
ˆRμν12=(01−10)

也就是说在正交标架下有ˆR1212=1,ˆR2112=−1。然后根据(h−1)μμ′Rμ′ν′hν′ν=∑β<γRμνβγdxβ∧dxγ计算Rμνβγ,我们有
(100sinθ)−1(0sinθdθ∧dϕ−sinθdθ∧dϕ0)(100sinθ)=Rμν12dθ∧dϕ

也就是
Rμν12=(0sin2θ−10)

也就是说有R1212=sinθ,R2112=−1。所有过程只不过是涉及到矩阵的乘法,这是我们所熟悉的,比繁琐的多重指标求和不知道省了多少心。对比ˆRμνβγ和Rμνβγ的形式,也可以发现确实正交标架确实起到了简化的作用。

四维的例子:史瓦西度规 #

爱因斯坦场方程的第一个精确解是史瓦西度规,它是通过求解如下形式的度规得到的
ds2=−e2Φdt2+e2Λdr2+r2dθ2+r2sin2θdϕ2


它的出发点是考虑一个各项同性的度规,因此Φ,Λ假定为仅仅是r的函数。我们来算这种情形下的黎曼曲率张量(难度中上)。

很自然地,我们取
ω1=eΦdt,ω2=eΛdr,ω3=rdθ,ω4=rsinθdϕ


这时
h=(eΦ0000eΛ0000r0000rsinθ),η=(−1000010000100001)

由dημν=ηανωαμ+ημαωαν可以知道ωμν=ωαμηαν是反对称的,并且结合η的形式来稍加分析,就可以得出,ωμν具有以下形式
(0ω12ω13ω14ω120ω23ω24ω13−ω230ω34ω14−ω24−ω340)

它的特点是,作为分块矩阵
(0ω12ω13ω14ω120ω23ω24ω13−ω230ω34ω14−ω24−ω340)=(EFGH)

来看,它是对称的,但对角线矩阵E,H都是反对称的。至于怎么分块,取决于我们将η分块为(−I00I)的方式,其中I代表单位阵。

有了ωμν的具体形式后,我们就可以写出dωμ+ωμν∧ων=0:
(0ω12ω13ω14ω120ω23ω24ω13−ω230ω34ω14−ω24−ω340)∧(eΦdteΛdrrdθrsinθdϕ)=−d(eΦdteΛdrrdθrsinθdϕ)=−(eΦ˙Φdr∧dt0dr∧dθsinθdr∧dϕ+rcosθdθ∧dϕ)


这里的˙指的是对r求导。充分头脑风暴,就可以快速将答案定位。比如看着第2行恒等于0,那么就可以断定ω12,ω23,ω24分别只与dt,dθ,dϕ有关,结合第1行,就可以确定ω12=eΦ−Λ˙Φdt,并且得出ω13,ω14分别只与dθ,dϕ有关。然后结合第3行,就可以确定ω13=0,还有ω23=−e−Λdθ,并且得出ω34只与dϕ有关,最后看着第4行,很快就确定ω14=0,ω24=−sinθe−Λdϕ,ω34=−cosθdϕ,最后得到
ωμν=(0eΦ−Λ˙Φdt00eΦ−Λ˙Φdt0−e−Λdθ−sinθe−Λdϕ0e−Λdθ0−cosθdϕ0sinθe−Λdϕcosθdϕ0)

现在就可以计算Rμν=dωμν+ωμα∧ωαν了,即
Rμν=d(0eΦ−Λ˙Φdt00eΦ−Λ˙Φdt0−e−Λdθ−sinθe−Λdϕ0e−Λdθ0−cosθdϕ0sinθe−Λdϕcosθdϕ0)+(0eΦ−Λ˙Φdt00eΦ−Λ˙Φdt0−e−Λdθ−sinθe−Λdϕ0e−Λdθ0−cosθdϕ0sinθe−Λdϕcosθdϕ0)∧(0eΦ−Λ˙Φdt00eΦ−Λ˙Φdt0−e−Λdθ−sinθe−Λdϕ0e−Λdθ0−cosθdϕ0sinθe−Λdϕcosθdϕ0)

算得
R11=R22=R33=R44=0R12=R21=−eΦ−Λ(¨Φ+˙Φ2−˙Φ˙Λ)dt∧drR13=R31=−eΦ−2Λ˙Φdt∧dθR14=R41=−eΦ−2Λ˙Φsinθdt∧dϕR23=−R32=e−Λ˙Λdr∧dθR24=−R42=e−Λ˙Λsinθdr∧dϕR34=−R43=(1−e2Λ)sinθdθ∧dϕ

这就可以依次读出ˆRμνβγ了,比如
ˆR1212=−e−2Λ(¨Φ+˙Φ2−˙Φ˙Λ),ˆR1312=−1re−2Λ˙Φ

等等,如果你愿意,还可以继续求Rμνβγ,因为h是一个对角阵,因此并不会增加多少工程。

读者要是亲自去运算,可能仍然会抱怨要花很多时间,也许会觉得并没有什么化简作用。但是,按照上面的步骤一步步来,哪怕是人工,也是可以操作的。这至少是一种人工可能算得出来的方法,上面的过程就是笔者手算出来的,并没有用到mathematica之类的软件。相信没有人从原始表达式Rμνβγ=∂Γμνγ∂xβ−∂Γμνβ∂xγ+ΓμαβΓανγ−ΓμαγΓανβ算过三维以上的黎曼曲率张量吧?别说算了,连搞清楚求和指标都不容易,这样对比起来,外微分的技巧就有效多了。当然,不管什么方法,首先总需要一点时间训练到熟悉;其次,就算已经熟悉了方法,也需要花点时间思考才能做出来,不可能一眼就看出来——除非是计算机。

如果您还有什么疑惑或建议,欢迎在下方评论区继续讨论。

如果您觉得本文还不错,欢迎分享/打赏本文。打赏并非要从中获得收益,而是希望知道科学空间获得了多少读者的真心关注。当然,如果你无视它,也不会影响你的阅读。再次表示欢迎和感谢!


如果您需要引用本文,请参考:

苏剑林. (Nov. 11, 2016). 《【外微分浅谈】7. 有力的计算 》[Blog post]. Retrieved from https:///archives/4076

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多