分享

一文汇总丨非酒精性脂肪性肝病相关HCC的危险因素与预防策略

 南方菩提 2021-05-20
据估计,全球四分之一的人口患有非酒精性脂肪性肝病(NAFLD)。在美国、法国和英国,NAFLD已经成为肝细胞癌(HCC)中增长最快的病因。虽然NAFLD相关HCC的发病率低于丙型肝炎等其他病因所致的HCC,但与其他肝病相比,患NAFLD的人更多,所以,有必要采取紧急措施,提高全球意识,应对代谢风险因素,以减轻NAFLD相关HCC的疾病负担。
近日,发表于Nature Reviews的一篇综述,讨论了NAFLD相关HCC的全球流行病学、预测和风险因素,并提出了预防策略。肝胆相照平台特将其中危险因素与预防部分进行摘译,以帮助临床医生对NAFLD相关HCC做出科学管理。

NAFLD相关HCC的危险因素

1
糖尿病
全球已有多项研究调查了糖尿病与NAFLD相关HCC之间的关系。在梅奥诊所的一项研究中,354例NASH肝硬化患者接受了47个月的随访。在该队列中,30名患者发生HCC1。糖尿病的存在使NASH相关肝硬化患者HCC风险增加了四倍(HR 4.2,95% CI 1.2-14.2;P=0.02)。

在一项基于欧洲人群的大型研究中,糖尿病被发现是HCC发生的最强独立风险因素,该研究包括136703名NAFLD患者,其中仅有4.7%的患者具有高纤维化评分(Fib-4)2。值得注意的是,糖尿病对HCC风险的影响并非NAFLD独有。来自美国、欧洲和亚洲的多项研究显示,无论肝脏疾病的病因如何,糖尿病患者患HCC的风险均增加3,4

Kanwal等学者评估了代谢综合征各组分对非肝硬化NAFLD患者HCC风险的独立和联合影响5。研究者评估了美国271906名受试者,其中253名在随访期间发生HCC。分析表明,额外的代谢特征导致风险逐步增加,糖尿病与HCC发展的最高风险相关。综合研究结果表明,无论是NAFLD肝硬化患者还是非NAFLD肝硬化患者,都应定期进行糖尿病或糖尿病前期筛查。
2
肥胖
肥胖可通过产生促肿瘤细胞因子IL-6和TNF8介导炎症和肝癌发生。

一项对26项前瞻性研究的meta分析显示,肥胖使原发性肝癌的风险增加83%,超重使其风险增加48%6。不过,在这些研究中未检查NAFLD状态。

Hassan等学者进行了一项病例对照研究,比较了622名新诊断为HCC的患者和660名按年龄和性别进行匹配的健康对照者7。研究人员发现,成年早期肥胖与HCC发展相关(OR 2.6,95% CI 1.4-4.4)。然而,在诊断出NAFLD相关HCC后,肥胖并不影响预后。

在先前提及的Kanwal等人5的研究中,无肝硬化且肥胖的患者发生HCC的风险增加了1.3倍,尽管这一发现没有达到统计学意义(HR 1.31,95% CI 0.98–1.74),而存在糖尿病、高血压和高脂血症时的肥胖将HCC发生风险进一步增加至2.6倍(HR 2.57,95% CI 2.3-2.9)。一项使用器官共享联合网络数据库进行的研究发现,在隐源性肝硬化和酒精性肝硬化患者中,肥胖是HCC的独立危险因素,而在其他病因的肝病患者中则不然8。因此,无论是非肝硬化NAFLD患者,还是肝硬化NAFLD患者,肥胖均是其发展为HCC的危险因素。
3
吸烟
总体来说,吸烟与HCC的风险增加有关9。在一项对81项研究进行的荟萃分析中,当前吸烟者HCC发生的综合OR为1.55(95% CI 1.46–1.65),吸烟史者为1.39(95% CI 1.26–1.52)10。不过,尚无研究专门验证吸烟与NAFLD相关HCC之间的关联11、1、2。尽管如此,还是建议NAFLD患者戒烟。
4
肠道微生物群和胆汁酸代谢
NAFLD与肠上皮细胞间紧密连接的破坏、肠道通透性增加以及肠道细菌和脂多糖的易位有关,从而导致肝脏炎症和纤维化12-16。肠道微生物群调节胆汁酸池,进而调节法尼醇X受体(FXR)17。在小鼠模型中,FXR通过保护胆汁酸相关的肝损伤和调节纤维化来帮助预防肝癌的发生18-20。在一项评估NAFLD相关HCC患者肠道菌群特征的研究中,与NASH肝硬化患者(n=20)相比,NAFLD相关HCC患者(n=21)的粪便钙卫蛋白增加,Akkermansia菌和双歧杆菌种类减少21,而Akkermansia菌和双歧杆菌已在小鼠和大鼠模型中被证明可以增强肠道屏障,减少肝脏炎症22,23
5
PNPLA3单核苷酸多态性
PNPLA3 c.444 C>G单核苷酸多态性与人类HCC风险增加有很大关联24

为了评估PNPLA3 rs738409单核苷酸多态性与HCC之间的关联,Singal等人进行了一项系统综述25,涉及24项研究,9915名肝病患者。结果显示,该多态性与肝硬化患者发生HCC的高风险相关(OR 1.40,95% CI 1.12–1.75)。分组分析显示,NASH相关或酒精相关肝硬化患者的HCC风险增加(OR 1.67,95% CI 1.27–2.21),而其他病因的肝硬化患者HCC风险并未增加。

在一项对100例NAFLD相关HCC(67%为肝硬化)患者和275例经活检证实为NAFLD的患者进行比较的对照研究中,PNPLA3 rs738409 C>G多态性被证明是HCC发生的独立危险因素(GG纯合子OR 5.05,95% CI 1.47–17.29;P=0.01)26。在对糖尿病、BMI和肝硬化的存在进行调整后,这种显著关联仍然存在。当GG纯合子与英国普通人群(CC纯合子)比较时,效果更为显著(OR 12.19,95% CI 6.89-21.58;P<0.0001)24,26

NAFLD相关HCC的预防

1
控制体重
对于诊断为NAFLD的患者,AASLD、EASL和亚太NAFLD指南建议结合低热量饮食和中等强度运动来维持体重减轻,但未推荐特定的减肥计划27,28,29。在一项针对293例NASH患者的古巴研究中30,目标体重减轻10%或以上,90%的患者显示出NASH缓解,45%的患者显示出纤维化消退的疗效。

目前,没有直接证据表明体重减轻会导致NAFLD相关HCC发病率降低。然而,仍应鼓励NAFLD患者减肥,对NAFLD相关HCC高风险患者,可考虑正式的减肥计划。减肥手术尚不推荐用于NAFLD相关HCC的预防。
2
他汀类药物
他汀类药物具有抗炎、抗血管生成和抗增殖作用,可有效对抗炎症驱动的癌症31。在一项对10项研究(1,459,417名患者,其中4,298名为HCC患者)进行的系统回顾和荟萃分析中,他汀类药物的使用与HCC风险显著降低相关,尤其是在亚洲人群中32。在一项对来自退伍军人事务中央癌症登记处的15422名HCC患者的单独分析中,HCC诊断后使用他汀类药物(高剂量和低剂量)与较低的癌症特异性和全因死亡率有关33。与这些发现相反,一项对22项随机试验的事后分析未显示出他汀类药物对HCC风险的益处34。不过,这些观察性或干预性研究均未在明确定义的NAFLD或NASH人群中进行。因此,目前不常规推荐他汀类药物用于HCC的预防。不过,在NAFLD患者存在血脂异常时,应当考虑使用他汀类药物,以降低心血管风险。
3
二甲双胍
二甲双胍是一种抗糖尿病药物,在几项荟萃分析中,无论肝病病因如何,使用二甲双胍均可使HCC风险降低约50%35-37

在一项回顾性队列研究中,Tseng使用倾向得分匹配法分析比较了21,900名二甲双胍使用者与21,900名从未使用过该药物的个体患HCC的风险。该研究显示,总体危险比为0.5(95% CI 0.45–0.54)38。这些研究均未在定义明确的NAFLD或NAFLD相关HCC人群中进行。基于此,二甲双胍不常规推荐用于HCC预防。不过,在存在NAFLD-NASH的情况下,仍应将二甲双胍作为糖尿病的一线治疗。
4
阿司匹林
在小鼠模型中,阿司匹林已被证明可以减少T细胞介导的炎症,减缓肝纤维化的发展,并可能减少肝癌瘤体形成39。Sahasrabuddhe及其同事分析了美国国立卫生研究院--美国退休人员协会(NIH-AARP)饮食与健康研究的300,504名参与者的前瞻性数据,发现自我报告的阿司匹林使用者患HCC的风险显著低于非使用者(RR 0.59,95% CI 0.45-0.77)40

在美国进行的两项前瞻性队列研究的汇总分析涉及133,371名报告阿司匹林使用数据的医疗保健专业人员,Simon等人表明,每周定期使用至少650mg阿司匹林与HCC风险降低50%相关(HR 0.51,95% CI 0.34-0.77)41。根据敏感性分析,阿司匹林在降低HCC风险方面的益处表现出剂量-反应关系,且不受他汀类药物使用的影响。

小结

NAFLD相关HCC在全球多个地区的发病率很高。特别是在美国和中国,NAFLD相关HCC的发病率正在上升。NAFLD和肝硬化患者患HCC的风险最高;其他危险因素包括老年、男性、PNPLA3变异体。糖尿病和肥胖是HCC发生的主要危险因素。

NAFLD患者应调整生活方式,以降低糖尿病、肥胖和后续HCC发生风险。根据目前的证据,化学预防暂不推荐用于HCC的初级预防,但二甲双胍、他汀类药物和阿司匹林可能有一定作用。

*肝癌在线原创编译

1. Yang, J. D. et al. Diabetes is associated with increased risk of hepatocellular carcinoma in patients with cirrhosis from nonalcoholic fatty liver disease. Hepatology 71, 907–916 (2020).

2. Alexander, M. et al. Risks and clinical predictors of cirrhosis and hepatocellular carcinoma diagnoses in adults with diagnosed NAFLD: real-world study of 18 million patients in four European cohorts. BMC Med. 17, 95 (2019).

3. Davila, J. A., Morgan, R. O., Shaib, Y., McGlynn, K. A. & El-Serag, H. B. Diabetes increases the risk of hepatocellular carcinoma in the United States: a population based case control study. Gut 54, 533–539 (2005).

4. El-Serag, H. B., Hampel, H. & Javadi, F. The association between diabetes and hepatocellular carcinoma: a systematic review of epidemiologic evidence. Clin. Gastroenterol. Hepatol. 4, 369–380 (2006).

5. Kanwal, F. et al. Effect of metabolic traits on the risk of cirrhosis and hepatocellular cancer in nonalcoholic fatty liver disease. Hepatology 71, 808–819 (2020). In this study of 271,906 patients with NAFLD diagnosed between 2004 and 2008, diabetes had the strongest association with HCC development (adjusted HR 2.77, 95% CI 2.03–3.77) among the metabolic risk factors.

6. Chen, Y., Wang, X., Wang, J., Yan, Z. & Luo, J. Excess body weight and the risk of primary liver cancer: an updated meta-analysis of prospective studies. Eur. J. Cancer 48, 2137–2145 (2012).

7. Hassan, M. M. et al. Obesity early in adulthood increases risk but does not affect outcomes of hepatocellular carcinoma. Gastroenterology 149, 119–129 (2015).

8. Nair, S., Mason, A., Eason, J., Loss, G. & Perrillo, R. P. Is obesity an independent risk factor for hepatocellular carcinoma in cirrhosis? Hepatology 36, 150–155 (2002).

9. Petrick, J. L. et al. Tobacco, alcohol use and risk of hepatocellular carcinoma and intrahepatic cholangiocarcinoma: the Liver Cancer Pooling Project. Br. J. Cancer 118, 1005–1012 (2018).

10. Abdel-Rahman, O. et al. Cigarette smoking as a risk factor for the development of and mortality from hepatocellular carcinoma: an updated systematic review of 81 epidemiological studies. J. Evid. Based Med. 10, 245–254 (2017).

11. Ascha, M. S. et al. The incidence and risk factors of hepatocellular carcinoma in patients with nonalcoholic steatohepatitis. Hepatology 51, 1972–1978 (2010).

12. Miele, L. et al. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology 49, 1877–1887 (2009).

13. Zhang, H.-L. et al. Profound impact of gut homeostasis on chemically-induced pro-tumorigenic inflammation and hepatocarcinogenesis in rats. J. Hepatol. 57, 803–812 (2012).

14. Sharpton, S. R., Ajmera, V. & Loomba, R. Emerging role of the gut microbiome in nonalcoholic

fatty liver disease: from composition to function. Clin. Gastroenterol. Hepatol. 17, 296–306 (2019).

15. Luther, J. et al. Hepatic injury in nonalcoholic steatohepatitis contributes to altered intestinal permeability. Cell. Mol. Gastroenterol. Hepatol. 1, 222–232 (2015).

16. Gäbele, E. et al. DSS induced colitis increases portal LPS levels and enhances hepatic inflammation and fibrogenesis in experimental NASH. J. Hepatol. 55, 1391–1399 (2011).

17. Makishima, M. et al. Identification of a nuclear receptor for bile acids. Science 284, 1362–1365 (1999).

18. Meng, Z. et al. FXR regulates liver repair after CCl4-induced toxic injury. Mol. Endocrinol. 24, 886–897 (2010).

19. Yang, F. et al. Spontaneous development of liver tumors in the absence of the bile acid receptor farnesoid X receptor. Cancer Res. 67, 863–867 (2007).

20. Fickert, P. et al. Farnesoid X receptor critically determines the fibrotic response in mice but is expressed to a low extent in human hepatic stellate cells and periductal myofibroblasts. Am. J. Pathol. 175, 2392–2405 (2009).

21. Ponziani, F. R. et al. Hepatocellular carcinoma is associated with gut microbiota profile and inflammation in nonalcoholic fatty liver disease. Hepatology 69, 107–120 (2019). This study from Italy demonstrated that Akkermansia and Bifidobacterium species are decreased in patients with NAFLD-related HCC compared with patients with NASH cirrhosis, highlighting that dysregulation of the gut microbiome might influence NAFLD-related hepatocarcinogenesis.

22. Wu, W. et al. Protective effect of Akkermansia muciniphila against immune-mediated liver injury in a mouse model. Front. Microbiol. 8, 1804 (2017).

23. Fang, D. et al. Bifidobacterium pseudocatenulatum LI09 and Bifidobacterium catenulatum LI10 attenuate D-galactosamine-induced liver injury by modifying the gut microbiota. Sci. Rep. 7, 8770 (2017).

24. Stender, S. & Loomba, R. PNPLA3 genotype and risk of liver and all-cause mortality. Hepatology 71, 777–779 (2020).

25. Singal, A. G. et al. The effect of PNPLA3 on fibrosis progression and development of hepatocellular carcinoma: a meta-analysis. Am. J. Gastroenterol. 109, 325–334 (2014).

26. Liu, Y.-L. et al. Carriage of the PNPLA3 rs738409 C >G polymorphism confers an increased risk of non-alcoholic fatty liver disease associated hepatocellular carcinoma. J. Hepatol. 61, 75–81 (2014).

27. Chalasani, N. et al. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases. Hepatology 67, 328–357 (2018).

28. European Association for the Study of the Liver (EASL), European Association for the Study of Diabetes (EASD) & European Association for the Study of Obesity (EASO). EASL–EASD–EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J. Hepatol. 64, 1388–1402 (2016).

29. Chitturi, S. et al. The Asia-Pacific Working Party on Non-alcoholic Fatty Liver Disease guidelines 2017–Part 2: management and special groups. J. Gastroenterol. Hepatol. 33, 86–98 (2018).

30. Vilar-Gomez, E. et al. Weight loss through lifestyle modification significantly reduces features of nonalcoholic steatohepatitis. Gastroenterology 149, 367–378.e5 (2015).

31. Demierre, M.-F., Higgins, P. D. R., Gruber, S. B., Hawk, E. & Lippman, S. M. Statins and cancer prevention. Nat. Rev. Cancer 5, 930–942 (2005).

32. Singh, S., Singh, P. P., Singh, A. G., Murad, M. H. & Sanchez, W. Statins are associated with a reduced risk of hepatocellular cancer: a systematic review and meta-analysis. Gastroenterology 144, 323–332 (2013).

33. Thrift, A. P., Natarajan, Y., Liu, Y. & El-Serag, H. B. Statin use after diagnosis of hepatocellular carcinoma is associated with decreased mortality. Clin. Gastroenterol. Hepatol. 17, 2117–2125.e3 (2019).

34. Cholesterol Treatment Trialists’ (CTT) Collaboration et al. Lack of effect of lowering LDL cholesterol on cancer: meta-analysis of individual data from 175,000 people in 27 randomised trials of statin therapy. PLoS ONE 7, e29849 (2012).

35. Singh, S., Singh, P. P., Singh, A. G., Murad, M. H. & Sanchez, W. Anti-diabetic medications and the risk of hepatocellular cancer: a systematic review and meta-analysis. Am. J. Gastroenterol.108, 881–891 (2013).

36. Ma, S., Zheng, Y., Xiao, Y., Zhou, P. & Tan, H. Meta-analysis of studies using metformin as a reducer for liver cancer risk in diabetic patients. Medicine 96, e6888 (2017).

37. Zhou, Y.-Y. et al. Systematic review with network meta-analysis: antidiabetic medication and risk of hepatocellular carcinoma. Sci. Rep. 6, 33743 (2016).

38. Tseng, C.-H. Metformin and risk of hepatocellular carcinoma in patients with type 2 diabetes. Liver Int. 38, 2018–2027 (2018).

39. Sitia, G. et al. Antiplatelet therapy prevents hepatocellular carcinoma and improves survival in a mouse model of chronic hepatitis B. Proc. Natl Acad. Sci. USA 109, E2165–E2172 (2012).

40. Sahasrabuddhe, V. V. et al. Nonsteroidal antiinflammatory drug use, chronic liver disease, and hepatocellular carcinoma. J. Natl Cancer Inst. 104, 1808–1814 (2012).

41. Simon, T. G. et al. Association between aspirin use and risk of hepatocellular carcinoma. JAMA Oncol. 4, 1683–1690 (2018).

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多