分享

【DCR专区|临床实践指南】美国结直肠外科医师学会结肠癌诊疗临床实践指南(下篇)

 cobra0537 2022-01-17
DCR专区

【DCR专区】为《中华胃肠外科杂志》与Diseases of the Colon & Rectum杂志合作开辟的新专栏,每个月与美国官网同步上线DCR杂志最新文章的中文翻译。

图片

图片


美国结直肠外科医师协会(ASCRS)致力于促进结直肠肛门疾病的科学化预防和管理,以确保为患者提供高质量的诊疗服务。临床实践指南委员会由结直肠外科领域的专业人士组成,旨在领导为结直肠肛门相关疾病定义优质医疗的国际性努力,并根据可获得的最佳证据制定临床实践指南。本指南非限制性的提供了可用于临床决策的信息,没有规定具体的治疗形式。本指南旨在为所有的执业医师、医疗工作者和患者提供本专业所需的所有相关治疗信息,但未囊括所有适当的诊疗方法,也没有排除其他合理的旨在获得相同结果的诊疗方法。医生须根据每个患者的具体情况,对任何特定步骤的适当性做出最终判断。


V. 局部复发治疗

20. 结肠癌局部或区域复发患者的治疗选择应该在多学科会诊背景下考虑。推荐等级:基于中等质量证据的强推荐,1B。

结肠癌局部和局部区域复发(local-regional recurrence,LRR)的真实发生率很难确定,因为系列研究往往将这些结果与远处疾病患者合并,并将结肠癌患者与直肠癌患者合并报道。最新可靠的研究报告称,4-7%的患者存在LRR,其中一半患者同时患有全身性疾病。初次切除至LRR的中位间隔时间为18-24个月208-210。LRR的危险因素包括T、N高分期、左侧肿瘤、化疗遗漏、首次手术切缘阳性、淋巴血管浸润184,208,209。无症状LRR可能以CEA水平升高为先兆,或在结肠镜检查或计算机断层扫描中发现,而其他人则表现为出血、疼痛或梗阻症状211。LRR可发生在吻合口,但更常发生在管腔外,并可能与邻近器官粘连212。对于LRR患者,采用CT、MRI和FDG PET/CT来确定疾病的范围和可切除性46,55。当LRR单独发生或存在可切除的转移时,可以尝试挽救性手术,以获得合理的短期和长期结果。这些结果根据疾病负荷和实现R0切除的能力而有所不同,但可以预见的是,与需要多脏器切除或有寡转移疾病的患者相比,孤立吻合口复发患者的预后更好210,211,213

2016年的一项系统综述评估了局部复发结肠癌切除术后的总生存期。该综述包括来自8项回顾性队列研究和一项基于人群注册的550例患者数据211。超过一半的患者接受了多脏器切除术。188例患者中有41例(22%)复发。接受手术的患者的中位总生存期为14-42个月,合计的5年总生存率为52%,接受R0手术的患者的预后最好。术后并发症率从21%至68%不等,但大多数并发症轻微。预测LRR术后延长生存期的因素包括R0切除、初始发病为早期疾病、无相关远处疾病和单一部位复发。在纳入的病例中通常采用化疗和放疗,但治疗的时机和具体情况各不相同211。一项研究选取了15名局部复发的结肠癌患者,这些病例侵犯其他结构,新辅助放化疗后,达到87%的R0切除率和100%的3年生存率212。而另一项研究确定术前化疗或放疗是R0切除的预测因素214。术中放射治疗在小范围复发和局部晚期疾病中也显示了较好的预后和较低的并发症率211


VI.  IV期结肠癌的处理管理

A. 可切除或潜在可切除的IV期结肠癌

21. 可切除的IV期结肠癌患者的治疗应个体化,并基于多学科综合讨论。推荐等级:基于中等质量证据的强推荐,1B。

在考虑IV期患者的治疗时,重点区分可切除的转移性疾病与可能转化为潜在可切除的转移性疾病,化疗后如果肿瘤消退则属后者。转化治疗方案通常是标准化疗加贝伐单抗或西妥昔单抗215,216。可切除或潜在可切除的转移性疾病应考虑切除原发肿瘤,一般而言,体能佳的可切除的肝转移和/或肺转移患者,将受益于转移灶的治愈性切除217,218。多学科会诊可以增加IV期结直肠癌患者转移灶切除率及改善生存率219,220

22. 初始可切除的结肠癌肝转移患者,可直接手术,或新辅助化疗后手术切除。推荐等级:基于中等质量证据的弱推荐,2B。

EORTC 40983研究讨论了全身化疗在可切除肝转移中的作用,1-4个转移灶的可切除肝转移患者,被随机分配到单纯手术组(即无新辅助或辅助化疗)或围手术期化疗组,后者先接受6个周期的FOLFOX方案(5-氟尿嘧啶、亚叶酸和奥沙利铂)新辅助化疗,然后序贯肝转移切除术,继之6个周期的FOLFOX辅助化疗221。围手术期化疗组肝切除并发症增加(25% vs. 16%,p=0.04)。3年无进展生存率,围手术期化疗组比单纯手术组提高了7%(35% vs 28%,p=0.04)。中位随访时间为8.5年(IQR 7.6-9.5),5年总生存率没有显著差异(接受围手术期化疗组的患者为51%,接受单独手术的患者为48%)222。由于围手术期化疗组改善了无进展生存期,EORTC研究者推荐这种治疗模式。在当前NCCN指南中,对于可切除的同时性或异时性结肠癌肝转移患者,推荐直接手术,或新辅助化疗后手术与辅助治疗的方案15

23. 初始不可切除的结肠癌肝转移患者,应考虑新辅助化疗,尝试转化为可切除。推荐等级:基于中等质量证据的强推荐,1B。

2017年对11项研究的系统回顾和荟萃分析表明,以奥沙利铂(FOLFOX)或伊立替康(FOFIRI)为基础的新辅助化疗联合贝伐珠单抗,将39%(27-53%)的初始不可切除结肠癌肝转移患者转化为可切除,而在这些“转化成功”的患者中,28%(18-41%)实现了R0切除223。2018年报道的FIRE-3研究,对转移性结直肠癌患者进行伊立替康为基础的化疗(FOLFIRI)加贝伐单抗或西妥昔单抗(KRAS野生型癌症)治疗,可切除性从22%提高到53%(p<0.001)224。2020年对20项研究的系统回顾表明,采用FOLFOX或FOLFIRI方案,或FOLFIRINOX方案(5-FU、奥沙利铂和伊立替康)联合贝伐单抗或西妥昔单抗(KRAS野生型癌症)的新辅助治疗,总的缓解率为55-85%,10-61%转化为可切除,R0切除率高达54% 225

24. 肝动脉灌注化疗联合全身化疗或免疫治疗可提高结肠癌肝转移的可切除性,但只应在具有相应专业能力的中心开展。推荐等级:基于中等质量证据的强推荐,1B。

在OPTILIV单臂研究中,KRAS野生型可切除结直肠肝转移患者,肝动脉灌注(hepatic artery infusion,HAI)伊立替康、奥沙利铂和5-FU,联合全身西妥昔单抗,64例患者中有19例(29.7%)实现转移灶的R0或R1切除术。这19例转化有效患者的中位总生存期为35(33至38)个月226。一项2期临床研究的两份报告表明,基于氟尿苷的HAI,联合基于奥沙利铂或伊立替康的全身化疗,伴或不伴贝伐珠单抗的有效率分别为76%和73%,可切除性转化率分别为47%和52% 227,228。在其中一份报告中,最终接受切除患者的3年总生存(overall survival,OS)率为80%,而未接受切除患者的3年OS为30%227。在另一份报告中,接受切除患者的5年OS为63.3%(95% CI:43.6-77.7%),未切除患者的5年OS为12.5%(95% CI:3.5-27.3%,p≤0.001)228。值得注意的是,这些研究中的治疗相关毒性很高,OPTILIV研究中77%的患者,和使用贝伐珠单抗方案的2期研究中41%的患者,存在3或4级毒性(中性粒细胞减少、腹痛和腹泻)。此外,在OPTILIV研究中,主要并发症(如肝动脉血栓形成或动脉炎)导致近一半研究受试的HAI给药中断。

25. 对于结肠癌合并可切除肝转移,复杂性较低的一般推荐单次“同期”手术,复杂性较高的一般推荐序贯或“分期手术”。推荐等级:基于中等质量证据的弱推荐,2B。

可切除局限性肝脏转移的的IV期患者应同时切除原发肿瘤和转移灶,切除顺序应个体化。重要的是,手术应在具备同时处理结肠手术和肝脏切除经验的中心开展。2003年,Martin及其同事的一项回顾性研究表明,同期切除(n=134)比分期切除(n=106)更简单(例如右结肠切除术与肝脏较少的病变切除或小块切除),且总体并发症率更低(49 % vs. 67%,p<0.003)、总住院时间(10天 vs. 18天,p<0.001)更短229。Reddy等人随后进行了一项多中心回顾性研究,包含结直肠癌肝转移分期切除475例和同期切除135例,研究表明小块肝切除术中加入结直肠切除术不会导致严重发病率增加(12.5% vs. 14.1%),但大块肝切除术合并结直肠切除术与单纯的大块肝切除术相比,导致严重并发症增加,大块肝切除是严重并发症的独立预测因子(HR 3.4,p=0.008)230。2015年的一项NSQIP研究表明,同期手术多用于相对低复杂性手术,而分期手术多用于更复杂病例231。在这项研究中,低风险结肠切除术(如右结肠切除术)联合低风险肝脏切除术(如左肝切除术)的术后累积并发症低至25%,而高风险结肠切除术(如全结肠切除术)联合高风险肝脏切除术(如右肝切除术)术后累积并发症高达39%。同时,另一项较近期的回顾性研究,纳入了145例同期切除和53例分期切除的结直肠和肝脏切除术患者,严重并发症(Calvien-Dindo III-IV级)发生率分别为15%和19%(p=0.51)。在亚组分析中,同时或分期进行肝切除的患者,术后并发症率(任何级别)分别为63%和56%(p=0.70),严重并发症分别为23%和18%(p值未提供),表明即使对于更复杂的病例,在有适当专业知识的中心开展同期切除可能是安全的232

26. 对于可切除的结肠癌肺转移患者,应考虑切除肺部病灶,以延长生存期。推荐等级:基于中等质量证据的弱推荐,2B。

2019年的一项回顾性研究纳入345名接受解剖或非解剖性肺切除的结直肠癌肺转移患者,结果表明KRAS野生型癌症患者和接受解剖性切除的患者的中位总生存期为101个月,且预后最好233。日本的一项回顾性研究,报告了553名接受结直肠癌肺灶转移切除术的患者,接受肺节段切除(n=98)或肺楔形切除(n=455)的患者,5年无复发生存率分别为49%和36%,5年总生存率分别为80%和68% 234。在西班牙的一项国家注册研究(2008-2010年)中,522名患者进行了各种类型的切除,中位无病生存期和疾病特异性生存期分别为28个月和55个月,接受大范围切除并行淋巴结切除术的患者预后最好218。2015年,日本的一项针对94名患者的单中心回顾性研究报告了5年的总体存活率为45%,结肠的5年生存率明显优于直肠转移(62% vs. 24%),但69%\的患者肿瘤复发(局部或远处),中位时间为11.5(0-50)个月235 。在结直肠癌肺转移瘤(Pulmonary Metastsectomy in Colorectal Cancer,PulMiCC)队列研究中,将可切除的结直肠癌肺转移患者随机分配至转移灶切除术或非转移灶切除术,中位总生存期分别为3.5(3.1-6.6)年和3.8(3.5-4.6)年,这支持了应该对这些患者进行非手术治疗的观点236。在这些病例中,立体定向体放射治疗(SBRT)也可以考虑,但与转移切除术相比,在无进展生存率和总生存率方面,其有效性似乎低于转移灶切除237

27. 对于可切除的结直肠癌腹膜转移,应在具有适当专业能力的多学科场所考虑进行细胞减灭术联合或不联合腹腔内化疗。推荐等级:基于中等质量证据的强推荐,1B。

在IV期患者中,多达25%的患者转移灶局限于腹膜238,239。这些患者的初始治疗方案包括全身化疗和/或腹膜癌切除术,联合或不联合腹腔内化疗。采用现代化疗药物和靶向生物疗法的全身治疗改善了结直肠癌相关癌症患者的预后,这些患者目前的中位生存期为16-24个月240。遗憾的是,采用以奥沙利铂为基础的单纯全身化疗的5年总生存率低于5%,而且添加贝伐单抗的获益甚微241,242

结直肠癌腹膜转移的手术方法,通常包括细胞减灭术联合丝裂霉素C或奥沙利铂的腹腔灌注或热灌注治疗71,243。采用该方法,在法国治疗的500多名患者中,5年总生存率和无病生存率分别为27%和10%,生存率与腹膜癌指数(Peritoneal Cancer Index,PCI)所描述的腹膜疾病程度成反比71。其他研究报道,采用该方法的患者中位生存期为22-63个月,5年总生存期为19-51% 244–249。在第一项关于该治疗方案的随机试验中,细胞减灭术联合腹腔内化疗对比基于奥沙利铂的全身化疗,2年总生存率分别为54%和38%,5年总生存率分别为33%和4%(p=0.02)248,肿瘤细胞减灭术的完成程度也与腹腔热灌注化疗(HIPEC)后的总生存直接相关250。2021年,PRODIGE-7是一项对比单纯的细胞减灭术(132例)与细胞减灭术联合HIPEC(133例)效果的多中心随机对照研究,其结果对HIPEC的价值提出了质疑。HIPEC组的严重不良事件发生率较高,但没有相关的总生存期获益(两组均为41-42个月)251。2020年关于结直肠癌腹膜转移管理的芝加哥共识承认了PRODIGE-7结果(当时未发表),并推荐高风险病例进行术前全身化疗(MSI-H肿瘤±免疫治疗),而低风险病例直接进行细胞减灭术,联合或不联合腹腔内化疗252

B. 不可切除的IV期结肠癌

广泛转移的结肠癌患者通常不适合手术治疗。另外也有患者可能由于全身合并症,不适合根治性切除术。在这些情况下,建议采用多学科管理方法来缓解潜在的痛苦。对于结肠原发灶无症状的无法治愈的转移性结肠癌患者,结肠切除术的价值存在争议。姑息治疗的目标应该是缓解癌症引起的症状和维持生活质量。姑息治疗通常包括全身化疗。针对胃肠道梗阻或结肠癌引起的顽固性出血的姑息性外科干预包括切除术、腔内支架治疗、消融手术、短路手术或建立转流性造口。在决定姑息性干预时,还应考虑患者的总体预期寿命。

28. 对于不可治愈的IV期结肠癌且原发灶无症状的患者,建议首先初始进行全身化疗。推荐等级:基于中等质量证据的强烈推荐强推荐,1B。

对于不可治愈的IV期结肠癌且原发灶无症状的患者,原发灶切除的价值存在争议。支持初始非手术治疗的有力论据可能基于前瞻性多中心II期NSABP C-10试验,该试验评估了原发灶无症状的不可切除转移性结肠癌患者预先接受FOLFOX化疗和贝伐单抗治疗253。在这项试验中,经过21个月的随访,14%的患者出现了与结肠肿瘤原发灶相关的主要并发症,12%的患者需要手术,最常见的是结肠梗阻。此外,SEER数据库(1998-2013)对4692例IV期结直肠癌患者(74%为结肠,26%为直肠)进行分析,仍有12%的患者需要非计划性手术254。在这项SEER分析中,6-12个月、12-24个月和>24个月需要非计划手术的概率分别为8.1%、6.7%和5.3%,非计划手术的危险因素包括女性、左半结肠癌和年轻人。此外,2017年对国家癌症数据库进行的多变量分析(包括对潜在联合作用的调整包括对潜在混杂因素的调整)表明,与单纯化疗相比,切除无症状原发灶无生存获益255。最后,在2021年,JCOG1007-iPACS试验报道其研究结果,该试验共纳入165例原发肿瘤无症状的IV期结直肠癌患者和1例无症状原发肿瘤患者,被随机分为单独化疗组(84例患者)或肿瘤原发灶肿瘤切除术(primary tumor resection,PTR)联合化疗组(81例患者)。中位随访22个月,PTR联合化疗组的中位总生存期为25.9个月(95%CI95% CI,19.9-31.5),单纯化疗组的中位总生存期为26.7个月(95%CI95% CI,21.9-32.5)(HR,1.10;95%CI95% CI,0.76-1.59;p=0.69)256。相反,赞成初始手术治疗的证据相对较弱,来自2016年单中心调整回顾性分析、2016年加拿大省级数据观察性研究及2019年的荟萃分析表明,与单纯化疗相比,姑息性切除原发灶可提高生存率,且不增加并发症发生率257-259。此外,支持初始手术切除肿瘤原发灶的其他证据来自2018年对ARCAD数据库中8项随机试验的分析,这些研究显示接受结肠原发灶切除术的患者无进展生存期(9.7对比 vs. 7.9个月,HR1.31【[1.19-1.44】)和总生存期(22.2对比16.4个月,HR1.60【[1.43-1.78]】)有所改善260。在这项ARCAD的分析中,大多数患者为结肠癌,所有患者均接受了以奥沙利铂或伊立替康为基础的全身化疗,大多数患者也接受了靶向、抗体治疗,但尚不清楚结肠癌原发灶实际上无症状的频率。2018年对NCDB(2004-12)的分析也存在同样的局限性,该分析显示肿瘤原发灶切除组的总生存期(22个月 vs. 对比13个月)有所改善。赞成初始手术治疗的最新数据来自最近公布的一项2020年韩国前瞻性多中心研究试验,48例患者随机分为原发灶切除组和单纯化疗组,结果显示切除组和化疗组的两年癌症特异性生存率分别为72%和47%(p=0.05),总生存率方面显示与临床相关但无统计学意义(分别为69%和45%,p=0.06)。化疗组的原发肿瘤相关并发症发生率为23%,结肠切除术后有5例患者出现术后并发症(19%;严重主要并发症4%)261。然而,虽然这项研究的结果引人关注,但值得注意的是,由于纳入人数不足,试验提前终止,48例患者中有4例失去随访脱落信息。

因此,根据目前可用的证据,尽管可能有人支持对这些患者进行初始手术治疗,但对这些患者进行初次化疗、疗效评估、预后评估和多学科的重复讨论,可能会提供更有力的证据。期待正在进行的前瞻性临床试验(CAIRO 4和GRECCAR 8)的结果公布,可能会提供额外的数据来指导这些患者的临床决策。

29. 对于结肠癌伴肠梗阻和无法治愈的转移性疾病的患者,或者在其他姑息性优于治愈性治疗的情况下,当预期生存期小于1年时,内镜下支架置入或结肠转流术优于结肠切除术。推荐等级:基于中等质量证据的强推荐,1B。

在姑息治疗情况中,内镜下支架减压治疗对于结肠癌伴肠梗阻优于初始结肠切除,其可降低死亡率、造口率和开始化疗的间隔时间,且无生存差异201,262-265。与无腹膜转移的患者相比,存在腹膜转移的患者结肠支架置入成功率较低,并发症发生率较高266-268。姑息性情况下的腔内支架置入术的通畅持续中位时间为106(68-288)天,1、6和12个月的支架通畅率分别为69%、54%和50% 269,270。当肿瘤向内侵袭导致梗阻复发时,在大多数患者中,在阻塞的支架内放置支架是安全有效的271,272。一项观察性队列研究评估了345例因结直肠癌梗阻而需要紧急住院或急诊住院患者的预后,这些患者在没有进一步切除计划的情况下接受了造口术或支架治疗273。接受支架治疗的患者更少住院时间延长,并更有可能出院回到自己家中。两组的再住院率与90天再次手术率相似,但支架组1年再次手术率增高。2014年发表的一项荟萃分析显示,经贝伐单抗治疗的患者使用腔内支架治疗,结肠穿孔率(12.5%)高于单纯化疗(7%),但最近的回顾性研究表明,在贝伐单抗治疗的患者中,支架相关穿孔率没有增加268,274,275


VII. 化疗、免疫治疗及分子靶向辅助治疗

30. 在II期结肠癌患者中,微卫星稳定/错配修复正常的癌症、梗阻、穿孔、切除标本中<12个淋巴结、分化差、淋巴血管浸润、周围神经浸润或高级别等级肿瘤出芽,辅助化疗可能提供生存获益。推荐等级:基于中等质量证据的弱推荐,2B。

II期结肠癌患者是一个异质的人群组,其预期5年总生存率为从74%(T4b分化差患者)-到90%(T3高分化患者)70。高危II期结肠癌包括出现梗阻或穿孔,、或切除标本<12个淋巴结,、切缘可疑或阳性,、T4b肿瘤,、分化差,、淋巴血管浸润,、神经周围浸润,、或高级别等级肿瘤出芽,或组织病理学中微卫星稳定/错配修复正常的患者55,276-284。关于辅助化疗在II期结肠癌中的作用存在争议。大多数针对结肠癌辅助治疗的随机试验均纳入了II期和III期患者,其中一些试验显示,II期患者的总生存率的潜在绝对获益在5-FU/LV组为2-3%,而在FOLFOX组为3-4%285-288。然而,在这些试验中,II期患者的比例约为20-25%,很难得出明确的结论。尽管MOSAIC试验的最初亚组分析表明提示,对于高危II期患者,在辅助化疗中加入奥沙利铂有所获益,但最近对这些数据的分析表明,无论患者是低危还是高危,奥沙利铂在II期患者治疗中均无获益289,290。2016年对5项前瞻性试验的汇总分析显示,在II期结肠癌患者中,以氟尿嘧啶为基础的辅助化疗与以奥沙利铂为基础的辅助化疗相比,加入奥沙利铂可改善5年无病复发率(10.3%对比15.3%,p<0.05),但5年死亡率无差异(9.4%对比10.2%,p>0.05)291。相反,在最近对国家癌症数据库(NCDB)中超过150000例II期结肠癌患者进行的另一项分析中,使用辅助化疗与提高生存率相关,而与病理风险因素无关292。在这项NCDB研究中,经协变量调整后,未经或经以氟尿嘧啶或奥沙利铂为基础的辅助化疗的低风险或高风险II期结肠癌患者的中位生存期分别为8.8年和13.2年(p<0.001)以及6.9年和11.0年(p<0.001)。尽管有NCDB的数据,但由于其回顾性设计的方法学局限性,大多数数据表明,辅助治疗对 ““低风险””II期结肠癌患者的获益微乎其微。具有一个或多个高危因素的II期患者,其复发风险接近IIIa期结肠癌,需常规考虑辅助化疗276,278,281。多基因分析及循环肿瘤DNA(circulating tumor DNA,ctDNA)检测是新兴技术,也可能在II期结肠癌患者的辅助治疗决策中发挥作用(见推荐#34)。

31.对于III期结肠癌患者,常规推荐辅助化疗。推荐等级:基于高质量证据的强烈推荐强推荐,:1A。 

对于MSI-H或MSI-L的III期结肠癌患者,美国和国际多机构的大型随机临床试验表明,以奥沙利铂为基础的辅助化疗可提高患者的生存率291,293-295。在这种情况下,口服卡培他滨(希罗达)是输注5-FU的安全有效的替代方案,与奥沙利铂(CAPOX)联合使用,其疗效与其他既定方案(FOLFOX)相似294,296。自2004年以来,6个月的辅助化疗方案一直是标准推荐285,289;然而,最近重新评估了辅助化疗的持续时间,部分原因是与奥沙利铂的副反应相关(如神经毒性)297。2018年,International Duration Evaluation of Adjuvant Therapy(IDEA)合作协作组报道,T1-3N1结肠癌患者接受3或6个月以奥沙利铂为基础的辅助化疗结果无差异(两组的3年无病生存率均为83%)。然而,在分期为T4和/或N2的患者中,辅助治疗6个月后无病生存率更高298。因此,辅助化疗的持续时间应根据患者特征、肿瘤分期和对化疗相关毒性的了解,采用共同决策方法确定。目前的证据不支持采用以伊立替康为基础的化疗方案299-302。对于III期结肠癌患者,FOLFOX辅助化疗方案中不推荐联合贝伐单抗或西妥昔单抗,因为随机试验表明,这些药物增加了严重不良事件的风险,而且生存方面也没有获益303,304

32. 在IV期错配修复缺陷型(dMMR)或微卫星高度不稳定(MSI-H)结肠癌患者中,应考虑针对程序性细胞死亡配体1(PD-L1)或程序性细胞死亡蛋白1(PD-1)的免疫治疗。推荐等级:基于高质量证据的强烈推荐强推荐,1A。

2020年,KEYNOTE-177试验纳入307例dMMR/MSI-H IV期结直肠癌患者,随机接受一线化疗或pembrolizumab(抗PD-1)治疗,结果显示pembrolizumab试验组改善了无进展生存期(中位16.5个月对比8.2个月;p=0.0002)305。在CheckMate 142试验纳入74例dMMR/MSI-H IV期结直肠癌二线治疗(在使用FOLFOX或FOLFIRI治疗期间病情进展或对这些药物不耐受后)的患者,74例患者中23例(31%)达到客观缓解,其中8例(11%)的反应持续时间为12个月306。KEYNOTE-164试验纳入的研究群体与CheckMate 142试验相似(即标准化疗±抗VEGf或抗EGFR后进展),结果显示32%的患者对pembrolizumab治疗有反应,12个月无进展生存率为41%307。Atezolizumab是一种针对程序性细胞死亡配体1(PD-L1)的单克隆抗体,目前正在进行的ATOMIC试验中纳入III期dMMR结肠癌患者,随机接受以奥沙利铂为基础的辅助化疗(联合或不联合Atezolizumab)。同时,对于微卫星稳定/MMR正常的结直肠癌,抗PD-1和PDL-1的治疗无效308

33. 一般而言,如果可能,应在结肠切除后8周内开始辅助化疗。推荐等级:基于中等质量证据的强推荐,1B。一般来说,辅助化疗应在结肠切除术后8周内开始。推荐等级:基于中等质量证据的强烈推荐,1B。

2016年及2018年美国国家癌症数据库对III期结肠癌患者的分析表明,在切除术后6-8周内开始辅助化疗可达到最大的总生存获益,即使在切除术后24周内开始辅助治疗仍然有效309,310。2015年,一项来自荷兰的全国性研究也表明,III期结肠癌切除术后8周以上开始辅助化疗,总体生存率降低311

34. 多基因检测分析、CDX2表达分析和循环肿瘤DNA(ctDNA)的使用可用于补充II期或III期结肠癌患者的多学科决策。推荐等级:基于中等质量证据的强烈推荐强推荐,1B。

Oncotype DX是一种对5个参考基因和7个复发风险基因表达的定量预后检测,将结肠癌分为低、中或高复发风险312。在Cancer and Leukemia Group B(CALGB)9581研究中登记的II期结肠癌患者的肿瘤样本中采用Oncotype DX表明,复发评分(recurrence score,RS,由结合所选癌症相关基因表达值的数学函数得出)范围为2-78(中位数31.4),RS增加25与癌症复发显著相关(HR 1.52[,95%CI95% CI ,1.09-2.12,;p=0.013)]313。对National Surgical Adjuvant Breast and Bowel Project(NSABP)C-07研究中纳入的II、III期结肠癌患者的肿瘤样本进行类似分析显示,RS预测癌症复发,与低RS组患者相比,高RS组的癌症复发率增加(HR 2.11,)[95%CI95% CI 1.54-2.88,p<0.001),高RS组患者无病生存率和总生存率降低,但从奥沙利铂辅助化疗中获益增加314。在另一项研究Quick and Simple and Reliable(QUASAR)中纳入的II期患者肿瘤样本中使用了13个基因分析,该分析使用了与Oncotype DX相似的分析方法,在RS低、中、高组中报道的3年癌症复发率分别为有12%、18%和22%(HR 1.94,p<0.001),但这一信息不能预测辅助化疗的获益315。ColoPrint是一种多基因分析方法,可将18个基因的表达量化为癌症复发的低或高概率。在一项对206例I-III期结肠癌患者采用ColoPrint评估的研究中,低风险组和高风险组的5年无复发生存率分别为88%(CI 81-94%)和67%(CI 55-79%)316。ColDx是另外一种利用634个探针的多基因分析方法,利用634个探针,有助用于确定高复发风险的II期结肠癌患者317。在一项采用ColDx确定II期患者高复发风险的研究中,与低风险患者相比,高风险组患者的无复发生存期更短(HR 2.13 13,CI 1.3-3.5,p<0.01)318。CDX2是一种转录因子,可识别能从辅助化疗中获益的高危II期结肠癌患者。在II期结肠癌中,CDX2阴性肿瘤患者的5年无病生存率显著低于CDX2阳性患者 阳性患者(HR 3.44 44,CI 1.60-7.38,;p=0.002)。对比相比于未接受辅助化疗的CDX2阴性患者,接受辅助化疗的患者的5年无病生存率较高(91% vs. 对比56%,p=0.006)319

循环肿瘤DNA(ctDNA)是进入血液的肿瘤DNA片段,可作为疾病标记残留或复发疾病的标记物。ctDNA的存在可用于风险评估,也可用于确定结肠癌术后高复发风险群体320。在一项纳入178例II期结肠癌患者的研究中,14例(7.9%)术后检测到ctDNA,11例(79%)在中位随访27个月时被诊断为疾病复发。相比之下,在164例未检测到ctDNA的患者中,只有16例(9.8%)复发(p<0.001)321。此外,ctDNA可能有助于术后或化疗后的复发监测,比标准监测更高效320,322-324。研究表明,转移性结肠癌系统治疗期间ctDNA减少与肿瘤反应之间存在相关性325-327。因此,目前正在对ctDNA进行研究,以确定它是否能是预测从辅助治疗获益的标记物。在一项对于II期患者的前瞻性观察研究中,辅助化疗结束后立即检测ctDNA与较低的无复发生存率相关(HR 11,CI 1.8-68,p=0.001)321。在对III期患者的类似研究中,辅助治疗完成后可检测到ctDNA的患者3年无复发生存率为30%,而未检测到ctDNA的患者为77%(HR 6.8;CI 11-157,p<0.001)324。另一项研究报告,如果辅助化疗结束后仍能检测到ctDNA,则复发风险增加17倍(HR 17.5, CI 5.4-56.5 5,p<0.001)320。这些研究为使用ctDNA指导辅助化疗提供了早期支持;然而,他们的样本量有限,并且使用了多种不同的ctDNA分析平台。正在进行的试验研究将探讨ctDNA是否是生存、复发和辅助治疗有效的可用标志物(NCT04068103,COBRA;NCT04120701,CIRCULATE;ACTRN12615000381583,DYNAMIC-II)。尽管这些关于多基因分析的数据令人深思启发思考,但目前的NCCN结肠癌指南指出,这些检测试验““可以进一步明确疾病复发风险,而不是其他风险因素””,但没有足够的数据推荐使用这些检测试验数据来评估复发风险或确定辅助治疗15。欧洲医学肿瘤学会(ESMO)指南与NCCN相似,认为目前“不支持”因为这些试验检测的常规使用“未批准”,但“可以考虑使用它们来补充中风险II期(结肠癌)的临床病理信息”46

滑动阅读参考文献

203. García-Blázquez V, Vicente-Bártulos A, Olavarria-Delgado A, Plana MN, van der Winden D, Zamora J; EBM-Connect Collaboration. Accuracy of CT angiography in the diagnosis of acute gastrointestinal bleeding: systematic review and meta-analysis. Eur Radiol. 2013;23:1181–1190.

204. Olds GD, Cooper GS, Chak A, Sivak MV Jr, Chitale AA, Wong RC. The yield of bleeding scans in acute lower gastrointestinal hemorrhage. J Clin Gastroenterol. 2005;39:273–277.

205. Tabibian JH, Wong Kee Song LM, Enders FB, Aguet JC, Tabibian N. Technetium-labeled erythrocyte scintigraphy in acute gastrointestinal bleeding. Int J Colorectal Dis. 2013;28:1099–1105.

206. Koh DC, Luchtefeld MA, Kim DG, et al. Efficacy of transarterial embolization as definitive treatment in lower gastrointestinal bleeding. Colorectal Dis. 2009;11:53–59.

207. Green BT, Rockey DC, Portwood G, et al. Urgent colonoscopy for evaluation and management of acute lower gastrointestinal hemorrhage: a randomized controlled trial. Am J Gastroenterol. 2005;100:2395–2402.

208. Elferink MA, Visser O, Wiggers T, et al. Prognostic factors for locoregional recurrences in colon cancer. Ann Surg Oncol. 2012;19:2203–2211.

209. Liska D, Stocchi L, Karagkounis G, et al. Incidence, patterns, and predictors of locoregional recurrence in colon cancer. Ann Surg Oncol. 2017;24:1093–1099.

210. Wisselink DD, Klaver CEL, Hompes R, Bemelman WA, Tanis PJ. Curative-intent surgery for isolated locoregional recurrence of colon cancer: review of the literature and institutional experience. Eur J Surg Oncol. 2020;46:1673–1682.

211. Chesney TR, Nadler A, Acuna SA, Swallow CJ. Outcomes of resection for locoregionally recurrent colon cancer: A systematic review. Surgery. 2016;160:54–66.

212. Hallet J, Zih FS, Lemke M, Milot L, Smith AJ, Wong CS. Neo-adjuvant chemoradiotherapy and multivisceral resection to optimize R0 resection of locally recurrent adherent colon cancer. Eur J Surg Oncol. 2014;40:706–712.

213. Jarrar A, Sheth R, Tiernan J, et al. Curative intent resection for loco-regionally recurrent colon cancer: cleveland clinic experience. Am J Surg. 2020;219:419–423.

214. Harji DP, Sagar PM, Boyle K, Griffiths B, McArthur DR, Evans M. Surgical resection of recurrent colonic cancer. Br J Surg. 2013;100:950–958.

215. Folprecht G, Gruenberger T, Bechstein W, et al. Survival of patients with initially unresectable colorectal liver metastases treated with FOLFOX/cetuximab or FOLFIRI/cetuximab in a multidisciplinary concept (CELIM study). Ann Oncol. 2014;25:1018–1025.

216. Ye LC, Liu TS, Ren L, et al. Randomized controlled trial of cetuximab plus chemotherapy for patients with KRAS wild-type unresectable colorectal liver-limited metastases. J Clin Oncol. 2013;31:1931–1938.

217. Kemeny NE, Chou JF, Boucher TM, et al. Updated long-term survival for patients with metastatic colorectal cancer treated with liver resection followed by hepatic arterial infusion and systemic chemotherapy. J Surg Oncol. 2016;113:477–484.

218. Hernández J, Molins L, Fibla JJ, Heras F, Embún R, Rivas JJ; Grupo Español de Metástasis Pulmonares de Carcinoma Colo-Rectal (GECMP-CCR) de la Sociedad Española de Neumología y Cirugía Torácica (SEPAR). Role of major resection in pulmonary metastasectomy for colorectal cancer in the Spanish prospective multicenter study (GECMP-CCR). Ann Oncol. 2016;27:850–855.

219. Lan YT, Jiang JK, Chang SC, et al. Improved outcomes of colorectal cancer patients with liver metastases in the era of the multidisciplinary teams. Int J Colorectal Dis. 2016;31:403–411.

220. Lordan JT, Karanjia ND, Quiney N, Fawcett WJ, Worthington TR. A 10-year study of outcome following hepatic resection for colorectal liver metastases - The effect of evaluation in a multidisciplinary team setting. Eur J Surg Oncol. 2009;35:302–306.

221. Nordlinger B, Sorbye H, Glimelius B, et al; EORTC Gastro-Intestinal Tract Cancer Group; Cancer Research UK; Arbeitsgruppe Lebermetastasen und-tumoren in der Chirurgischen Arbeitsgemeinschaft Onkologie (ALM-CAO); Australasian Gastro-Intestinal Trials Group (AGITG); Fédération Francophone de Cancérologie Digestive (FFCD). Perioperative chemotherapy with FOLFOX4 and surgery versus surgery alone for resectable liver metastases from colorectal cancer (EORTC Intergroup trial 40983): a randomised controlled trial. Lancet. 2008;371:1007–1016.

222. Nordlinger B, Sorbye H, Glimelius B, et al; EORTC Gastro-Intestinal Tract Cancer Group; Cancer Research UK; Arbeitsgruppe Lebermetastasen und–tumoren in der Chirurgischen Arbeitsgemeinschaft Onkologie (ALM-CAO); Australasian Gastro-Intestinal Trials Group (AGITG); Fédération Francophone de Cancérologie Digestive (FFCD). Perioperative FOLFOX4 chemotherapy and surgery versus surgery alone for resectable liver metastases from colorectal cancer (EORTC 40983): long-term results of a randomised, controlled, phase 3 trial. Lancet Oncol. 2013;14:1208–1215.

223. Tomasello G, Petrelli F, Ghidini M, Russo A, Passalacqua R, Barni S. FOLFOXIRI plus bevacizumab as conversion therapy for patients with initially unresectable metastatic colorectal cancer: a systematic review and pooled analysis. JAMA Oncol. 2017;3:e170278.

224. Modest DP, Denecke T, Pratschke J, et al. Surgical treatment options following chemotherapy plus cetuximab or bevacizumab in metastatic colorectal cancer-central evaluation of FIRE-3. Eur J Cancer. 2018;88:77–86.

225. Bolhuis K, Kos M, van Oijen MGH, Swijnenburg RJ, Punt CJA. Conversion strategies with chemotherapy plus targeted agents for colorectal cancer liver-only metastases: A systematic review. Eur J Cancer. 2020;141:225–238.

226. Lévi FA, Boige V, Hebbar M, et al; Association Internationale pour Recherche sur Temps Biologique et Chronothérapie (ARTBC International). Conversion to resection of liver metastases from colorectal cancer with hepatic artery infusion of combined chemotherapy and systemic cetuximab in multicenter trial OPTILIV. Ann Oncol. 2016;27:267–274.

227. DʼAngelica MI, Correa-Gallego C, Paty PB, et al. Phase II trial of hepatic artery infusional and systemic chemotherapy for patients with unresectable hepatic metastases from colorectal cancer: conversion to resection and long-term outcomes. Ann Surg. 2015;261:353–360.

228. Pak LM, Kemeny NE, Capanu M, et al. Prospective phase II trial of combination hepatic artery infusion and systemic chemotherapy for unresectable colorectal liver metastases: long term results and curative potential. J Surg Oncol. 2018;117:634–643.

229. Martin R, Paty P, Fong Y, et al. Simultaneous liver and colorectal resections are safe for synchronous colorectal liver metastasis. J Am Coll Surg. 2003;197:233–241.

230. Reddy SK, Pawlik TM, Zorzi D, et al. Simultaneous resections of colorectal cancer and synchronous liver metastases: a multi-institutional analysis. Ann Surg Oncol. 2007;14:3481–3491.

231. Shubert CR, Habermann EB, Bergquist JR, et al. A NSQIP review of major morbidity and mortality of synchronous liver resection for colorectal metastasis stratified by extent of liver resection and type of colorectal resection. J Gastrointest Surg. 2015;19:1982–1994.

232. Silberhumer GR, Paty PB, Temple LK, et al. Simultaneous resection for rectal cancer with synchronous liver metastasis is a safe procedure. Am J Surg. 2015;209:935–942.

233. Renaud S, Seitlinger J, Lawati YA, et al. Anatomical Resections improve survival following lung metastasectomy of colorectal cancer harboring KRAS mutations. Ann Surg. 2019;270:1170–1177.

234. Shiono S, Okumura T, Boku N, et al. Outcomes of segmentectomy and wedge resection for pulmonary metastases from colorectal cancer. Eur J Cardiothorac Surg. 2017;51:504–510.

235. Suzuki H, Kiyoshima M, Kitahara M, Asato Y, Amemiya R. Long-term outcomes after surgical resection of pulmonary metastases from colorectal cancer. Ann Thorac Surg. 2015;99:435–440.

236. Milosevic M, Edwards J, Tsang D, et al. Pulmonary Metastasectomy in Colorectal Cancer: updated analysis of 93 randomized patients - control survival is much better than previously assumed. Colorectal Dis. 2020;22:1314–1324.

237. Kanzaki R, Suzuki O, Kanou T, et al. The short-term outcomes of pulmonary metastasectomy or stereotactic body radiation therapy for pulmonary metastasis from epithelial tumors. J Cardiothorac Surg. 2020;15:43.

238. Hompes D, D’Hoore A, Van Cutsem E, et al. The treatment of peritoneal carcinomatosis of colorectal cancer with complete cytoreductive surgery and hyperthermic intraperitoneal peroperative chemotherapy (HIPEC) with oxaliplatin: a Belgian multicentre prospective phase II clinical study. Ann Surg Oncol. 2012;19:2186–2194.

239. Leung V, Huo YR, Liauw W, Morris DL. Oxaliplatin versus Mitomycin C for HIPEC in colorectal cancer peritoneal carcinomatosis. Eur J Surg Oncol. 2017;43:144–149.

240. Zani S, Papalezova K, Stinnett S, Tyler D, Hsu D, Blazer DG III. Modest advances in survival for patients with colorectal-associated peritoneal carcinomatosis in the era of modern chemotherapy. J Surg Oncol. 2013;107:307–311.

241. Franko J, Shi Q, Goldman CD, et al. Treatment of colorectal peritoneal carcinomatosis with systemic chemotherapy: a pooled analysis of north central cancer treatment group phase III trials N9741 and N9841. J Clin Oncol. 2012;30:263–267.

242. Razenberg LG, van Gestel YR, Lemmens VE, de Hingh IH, Creemers GJ. Bevacizumab in addition to palliative chemotherapy for patients with peritoneal carcinomatosis of colorectal origin: a nationwide population-based study. Clin Colorectal Cancer. 2016;15:e41–e46.

243. Elias D, Benizri E, Di Pietrantonio D, Menegon P, Malka D, Raynard B. Comparison of two kinds of intraperitoneal chemotherapy following complete cytoreductive surgery of colorectal peritoneal carcinomatosis. Ann Surg Oncol. 2007;14:509–514.

244. Elias D, Lefevre JH, Chevalier J, et al. Complete cytoreductive surgery plus intraperitoneal chemohyperthermia with oxaliplatin for peritoneal carcinomatosis of colorectal origin. J Clin Oncol. 2009;27:681–685.

245. Franko J, Ibrahim Z, Gusani NJ, Holtzman MP, Bartlett DL, Zeh HJ III. Cytoreductive surgery and hyperthermic intraperitoneal chemoperfusion versus systemic chemotherapy alone for colorectal peritoneal carcinomatosis. Cancer. 2010;116:3756–3762.

246. Verwaal VJ, Bruin S, Boot H, van Slooten G, van Tinteren H. 8-year follow-up of randomized trial: cytoreduction and hyperthermic intraperitoneal chemotherapy versus systemic chemotherapy in patients with peritoneal carcinomatosis of colorectal cancer. Ann Surg Oncol. 2008;15:2426–2432.

247. Verwaal VJ, van Ruth S, Witkamp A, Boot H, van Slooten G, Zoetmulder FA. Long-term survival of peritoneal carcinomatosis of colorectal origin. Ann Surg Oncol. 2005;12:65–71.

248. Cashin PH, Mahteme H, Spång N, et al. Cytoreductive surgery and intraperitoneal chemotherapy versus systemic chemotherapy for colorectal peritoneal metastases: A randomised trial. Eur J Cancer. 2016;53:155–162.

249. Bakkers C, van Erning FN, Rovers KP, et al. Long-term survival after hyperthermic intraperitoneal chemotherapy using mitomycin C or oxaliplatin in colorectal cancer patients with synchronous peritoneal metastases: A nationwide comparative study. Eur J Surg Oncol. 2020;46:1902–1907.

250. Ihemelandu C, Fernandez S, Sugarbaker PH. A prognostic model for predicting overall survival in patients with peritoneal surface malignancy of an appendiceal origin treated with cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. Ann Surg Oncol. 2017;24:2266–2272.

251. Quénet F, Elias D, Roca L, et al; UNICANCER-GI Group and BIG Renape Group. Cytoreductive surgery plus hyperthermic intraperitoneal chemotherapy versus cytoreductive surgery alone for colorectal peritoneal metastases (PRODIGE 7): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2021;22:256–266.

252. Chicago Consensus Working Group. The Chicago consensus on peritoneal surface malignancies: management of colorectal metastases. Ann Surg Oncol. 2020;27:1761–1767.

253. McCahill LE, Yothers G, Sharif S, et al. Primary mFOLFOX6 plus bevacizumab without resection of the primary tumor for patients presenting with surgically unresectable metastatic colon cancer and an intact asymptomatic colon cancer: definitive analysis of NSABP trial C-10. J Clin Oncol. 2012;30:3223–3228.

254. Lorimer PD, Motz BM, Kirks RC, et al. Frequency of unplanned surgery in patients with stage IV colorectal cancer receiving palliative chemotherapy with an intact primary: an analysis of SEER-Medicare. J Surg Oncol. 2019;120:407–414.

255. Alawadi Z, Phatak UR, Hu CY, et al. Comparative effectiveness of primary tumor resection in patients with stage IV colon cancer. Cancer. 2017;123:1124–1133.

256. Kanemitsu Y, Shitara K, Mizusawa J, et al; JCOG Colorectal Cancer Study Group. Primary Tumor resection plus chemotherapy versus chemotherapy alone for colorectal cancer patients with asymptomatic, synchronous unresectable metastases (JCOG1007; iPACS): a randomized clinical trial. J Clin Oncol. 2021;39:1098–1107.

257. Ahmed S, Fields A, Pahwa P, et al. Surgical resection of primary tumor in asymptomatic or minimally symptomatic patients with stage IV colorectal cancer: a Canadian province experience. Clin Colorectal Cancer. 2015;14:e41–e47.

258. Shida D, Hamaguchi T, Ochiai H, et al. Prognostic impact of palliative primary tumor resection for unresectable stage 4 colorectal cancer: using a propensity score analysis. Ann Surg Oncol. 2016;23:3602–3608.

259. Simillis C, Kalakouti E, Afxentiou T, et al. Primary tumor resection in patients with incurable localized or metastatic colorectal cancer: a systematic review and meta-analysis. World J Surg. 2019;43:1829–1840.

260. van Rooijen KL, Shi Q, Goey KKH, et al. Prognostic value of primary tumour resection in synchronous metastatic colorectal cancer: individual patient data analysis of first-line randomised trials from the ARCAD database. Eur J Cancer. 2018;91:99–106.

261. Park EJ, Baek JH, Choi GS, et al. The role of primary tumor resection in colorectal cancer patients with asymptomatic, synchronous, unresectable metastasis: a multicenter randomized controlled trial. Cancers (Basel). 2020;12:12.

262. Fiori E, Lamazza A, Schillaci A, et al. Palliative management for patients with subacute obstruction and stage IV unresectable rectosigmoid cancer: colostomy versus endoscopic stenting: final results of a prospective randomized trial. Am J Surg. 2012;204:321–326.

263. Gianotti L, Tamini N, Nespoli L, et al. A prospective evaluation of short-term and long-term results from colonic stenting for palliation or as a bridge to elective operation versus immediate surgery for large-bowel obstruction. Surg Endosc. 2013;27:832–842.

264. Finlayson A, Hulme-Moir M. Palliative colonic stenting: a safe alternative to surgery in stage IV colorectal cancer. ANZ J Surg. 2016;86:773–777.

265. Young CJ, De-Loyde KJ, Young JM, et al. Improving Quality of life for people with incurable large-bowel obstruction: randomized control trial of colonic stent insertion. Dis Colon Rectum. 2015;58:838–849.

266. Faraz S, Salem SB, Schattner M, et al. Predictors of clinical outcome of colonic stents in patients with malignant large-bowel obstruction because of extracolonic malignancy. Gastrointest Endosc. 2018;87:1310–1317.

267. Park JJ, Rhee K, Yoon JY, et al. Impact of peritoneal carcinomatosis on clinical outcomes of patients receiving self-expandable metal stents for malignant colorectal obstruction. Endoscopy. 2018;50:1163–1174.

268. Park YE, Park Y, Park SJ, Cheon JH, Kim WH, Kim TI. Outcomes of stent insertion and mortality in obstructive stage IV colorectal cancer patients through 10 year duration. Surg Endosc. 2019;33:1225–1234.

269. van den Berg MW, Ledeboer M, Dijkgraaf MG, Fockens P, ter Borg F, van Hooft JE. Long-term results of palliative stent placement for acute malignant colonic obstruction. Surg Endosc. 2015;29:1580–1585.

270. Watt AM, Faragher IG, Griffin TT, Rieger NA, Maddern GJ. Self-expanding metallic stents for relieving malignant colorectal obstruction: a systematic review. Ann Surg. 2007;246:24–30.

271. Yoon JY, Jung YS, Hong SP, Kim TI, Kim WH, Cheon JH. Outcomes of secondary stent-in-stent self-expandable metal stent insertion for malignant colorectal obstruction. Gastrointest Endosc. 2011;74:625–633.

272. Yoon JY, Park SJ, Hong SP, Kim TI, Kim WH, Cheon JH. Outcomes of secondary self-expandable metal stents versus surgery after delayed initial palliative stent failure in malignant colorectal obstruction. Digestion. 2013;88:46–55.

273. Abelson JS, Yeo HL, Mao J, Milsom JW, Sedrakyan A. Long-term Postprocedural outcomes of palliative emergency stenting vs stoma in malignant large-bowel obstruction. JAMA Surg. 2017;152:429–435.

274. Lee JH, Emelogu I, Kukreja K, et al. Safety and efficacy of metal stents for malignant colonic obstruction in patients treated with bevacizumab. Gastrointest Endosc. 2019;90:116–124.

275. van Halsema EE, van Hooft JE, Small AJ, et al. Perforation in colorectal stenting: a meta-analysis and a search for risk factors. Gastrointest Endosc. 2014;79:970–82.e7.

276. André T, de Gramont A, Vernerey D, et al. Adjuvant fluorouracil, leucovorin, and oxaliplatin in stage II to III colon cancer: updated 10-year survival and outcomes according to BRAF mutation and mismatch repair status of the MOSAIC study. J Clin Oncol. 2015;33:4176–4187.

277. Costas-Chavarri A, Nandakumar G, Temin S, et al. Treatment of patients with early-stage colorectal cancer: ASCO resource-stratified guideline. J Glob Oncol. 2019;5:1–19.

278. Kumar A, Kennecke HF, Renouf DJ, et al. Adjuvant chemotherapy use and outcomes of patients with high-risk versus low-risk stage II colon cancer. Cancer. 2015;121:527–534.

279. Labianca R, Nordlinger B, Beretta GD, et al; ESMO Guidelines Working Group. Early colon cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2013;24(suppl 6):vi64–vi72.

280. Liebig C, Ayala G, Wilks J, et al. Perineural invasion is an independent predictor of outcome in colorectal cancer. J Clin Oncol. 2009;27:5131–5137.

281. Niedzwiecki D, Bertagnolli MM, Warren RS, et al. Documenting the natural history of patients with resected stage II adenocarcinoma of the colon after random assignment to adjuvant treatment with edrecolomab or observation: results from CALGB 9581. J Clin Oncol. 2011;29:3146–3152.

282. Quah HM, Chou JF, Gonen M, et al. Identification of patients with high-risk stage II colon cancer for adjuvant therapy. Dis Colon Rectum. 2008;51:503–507.

283. Romiti A, Roberto M, Marchetti P, et al. Study of histopathologic parameters to define the prognosis of stage II colon cancer. Int J Colorectal Dis. 2019;34:905–913.

284. Sargent DJ, Marsoni S, Monges G, et al. Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer. J Clin Oncol. 2010;28:3219–3226.

285. Kuebler JP, Wieand HS, O’Connell MJ, et al. Oxaliplatin combined with weekly bolus fluorouracil and leucovorin as surgical adjuvant chemotherapy for stage II and III colon cancer: results from NSABP C-07. J Clin Oncol. 2007;25:2198–2204.

286. André T, Boni C, Mounedji-Boudiaf L, et al; Multicenter International Study of Oxaliplatin/5-Fluorouracil/Leucovorin in the Adjuvant Treatment of Colon Cancer (MOSAIC) Investigators. Oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment for colon cancer. N Engl J Med. 2004;350:2343–2351.

287. Gray R, Barnwell J, McConkey C, Hills RK, Williams NS, Kerr DJ; Quasar Collaborative Group. Adjuvant chemotherapy versus observation in patients with colorectal cancer: a randomised study. Lancet. 2007;370:2020–2029.

288. Wilkinson NW, Yothers G, Lopa S, Costantino JP, Petrelli NJ, Wolmark N. Long-term survival results of surgery alone versus surgery plus 5-fluorouracil and leucovorin for stage II and stage III colon cancer: pooled analysis of NSABP C-01 through C-05. A baseline from which to compare modern adjuvant trials. Ann Surg Oncol. 2010;17:959–966.

289. André T, Boni C, Navarro M, et al. Improved overall survival with oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment in stage II or III colon cancer in the MOSAIC trial. J Clin Oncol. 2009;27:3109–3116.

290. Tournigand C, André T, Bonnetain F, et al. Adjuvant therapy with fluorouracil and oxaliplatin in stage II and elderly patients (between ages 70 and 75 years) with colon cancer: subgroup analyses of the Multicenter International Study of Oxaliplatin, Fluorouracil, and Leucovorin in the Adjuvant Treatment of Colon Cancer trial. J Clin Oncol. 2012;30:3353–3360.

291. Shah MA, Renfro LA, Allegra CJ, et al. Impact of patient factors on recurrence risk and time dependency of oxaliplatin benefit in patients with colon cancer: analysis from modern-era adjuvant studies in the adjuvant colon cancer end points (ACCENT) database. J Clin Oncol. 2016;34:843–853.

292. Casadaban L, Rauscher G, Aklilu M, Villenes D, Freels S, Maker AV. Adjuvant chemotherapy is associated with improved survival in patients with stage II colon cancer. Cancer. 2016;122:3277–3287.

293. Sanoff HK, Carpenter WR, Martin CF, et al. Comparative effectiveness of oxaliplatin vs non-oxaliplatin-containing adjuvant chemotherapy for stage III colon cancer. J Natl Cancer Inst. 2012;104:211–227.

294. Schmoll HJ, Twelves C, Sun W, et al. Effect of adjuvant capecitabine or fluorouracil, with or without oxaliplatin, on survival outcomes in stage III colon cancer and the effect of oxaliplatin on post-relapse survival: a pooled analysis of individual patient data from four randomised controlled trials. Lancet Oncol. 2014;15:1481–1492.

295. Tougeron D, Mouillet G, Trouilloud I, et al. Efficacy of adjuvant chemotherapy in colon cancer with microsatellite instability: a large multicenter AGEO study. J Natl Cancer Inst. 2016;108:108.

296. Schmoll HJ, Tabernero J, Maroun J, et al. Capecitabine plus oxaliplatin compared with fluorouracil/folinic acid as adjuvant therapy for stage III colon cancer: final results of the NO16968 randomized controlled phase III trial. J Clin Oncol. 2015;33:3733–3740.

297. Grothey A. Oxaliplatin-safety profile: neurotoxicity. Semin Oncol. 2003;30(suppl 15):5–13.

298. Grothey A, Sobrero AF, Shields AF, et al. Duration of adjuvant chemotherapy for stage III colon cancer. N Engl J Med. 2018;378:1177–1188.

299. Saltz LB, Niedzwiecki D, Hollis D, et al. Irinotecan fluorouracil plus leucovorin is not superior to fluorouracil plus leucovorin alone as adjuvant treatment for stage III colon cancer: results of CALGB 89803. J Clin Oncol. 2007;25:3456–3461.

300. Van Cutsem E, Labianca R, Bodoky G, et al. Randomized phase III trial comparing biweekly infusional fluorouracil/leucovorin alone or with irinotecan in the adjuvant treatment of stage III colon cancer: PETACC-3. J Clin Oncol. 2009;27:3117–3125.

301. Ychou M, Raoul JL, Douillard JY, et al. A phase III randomised trial of LV5FU2 + irinotecan versus LV5FU2 alone in adjuvant high-risk colon cancer (FNCLCC Accord02/FFCD9802). Ann Oncol. 2009;20:674–680.

302. Papadimitriou CA, Papakostas P, Karina M, et al. A randomized phase III trial of adjuvant chemotherapy with irinotecan, leucovorin and fluorouracil versus leucovorin and fluorouracil for stage II and III colon cancer: a Hellenic Cooperative Oncology Group study. BMC Med. 2011;9:10.

303. Alberts SR, Sargent DJ, Nair S, et al. Effect of oxaliplatin, fluorouracil, and leucovorin with or without cetuximab on survival among patients with resected stage III colon cancer: a randomized trial. JAMA. 2012;307:1383–1393.

304. de Gramont A, Van Cutsem E, Schmoll HJ, et al. Bevacizumab plus oxaliplatin-based chemotherapy as adjuvant treatment for colon cancer (AVANT): a phase 3 randomised controlled trial. Lancet Oncol. 2012;13:1225–1233.

305. André T, Shiu KK, Kim TW, et al; KEYNOTE-177 Investigators. Pembrolizumab in microsatellite-instability-high advanced colorectal cancer. N Engl J Med. 2020;383:2207–2218.

306. Overman MJ, McDermott R, Leach JL, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol. 2017;18:1182–1191.

307. Le DT, Kim TW, Van Cutsem E, et al. Phase II open-label study of pembrolizumab in treatment-refractory, microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: KEYNOTE-164. J Clin Oncol. 2020;38:11–19.

308. Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372:2509–2520.

309. Turner MC, Farrow NE, Rhodin KE, et al. Delay in adjuvant chemotherapy and survival advantage in stage III colon cancer. J Am Coll Surg. 2018;226:670–678.

310. Sun Z, Adam MA, Kim J, et al. Determining the optimal timing for initiation of adjuvant chemotherapy after resection for stage II and III colon cancer. Dis Colon Rectum. 2016;59:87–93.

311. Bos AC, van Erning FN, van Gestel YR, et al. Timing of adjuvant chemotherapy and its relation to survival among patients with stage III colon cancer. Eur J Cancer. 2015;51:2553–2561.

312. O’Connell MJ, Lavery I, Yothers G, et al. Relationship between tumor gene expression and recurrence in four independent studies of patients with stage II/III colon cancer treated with surgery alone or surgery plus adjuvant fluorouracil plus leucovorin. J Clin Oncol. 2010;28:3937–3944.

313. Venook AP, Niedzwiecki D, Lopatin M, et al. Biologic determinants of tumor recurrence in stage II colon cancer: validation study of the 12-gene recurrence score in cancer and leukemia group B (CALGB) 9581. J Clin Oncol. 2013;31:1775–1781.

314. Yothers G, O’Connell MJ, Lee M, et al. Validation of the 12-gene colon cancer recurrence score in NSABP C-07 as a predictor of recurrence in patients with stage II and III colon cancer treated with fluorouracil and leucovorin (FU/LV) and FU/LV plus oxaliplatin. J Clin Oncol. 2013;31:4512–4519.

315. Gray RG, Quirke P, Handley K, et al. Validation study of a quantitative multigene reverse transcriptase-polymerase chain reaction assay for assessment of recurrence risk in patients with stage II colon cancer. J Clin Oncol. 2011;29:4611–4619.

316. Salazar R, Roepman P, Capella G, et al. Gene expression signature to improve prognosis prediction of stage II and III colorectal cancer. J Clin Oncol. 2011;29:17–24.

317. Kennedy RD, Bylesjo M, Kerr P, et al. Development and independent validation of a prognostic assay for stage II colon cancer using formalin-fixed paraffin-embedded tissue. J Clin Oncol. 2011;29:4620–4626.

318. Niedzwiecki D, Frankel WL, Venook AP, et al. Association Between results of a gene expression signature assay and recurrence-free interval in patients with stage II colon cancer in cancer and leukemia group B 9581 (Alliance). J Clin Oncol. 2016;34:3047–3053.

319. Dalerba P, Sahoo D, Paik S, et al. CDX2 as a Prognostic biomarker in stage II and stage III colon cancer. N Engl J Med. 2016;374:211–222.

320. Reinert T, Henriksen TV, Christensen E, et al. Analysis of plasma cell-free DNA by ultradeep sequencing in patients with stages I to III colorectal cancer. JAMA Oncol. 2019;5:1124–1131.

321. Tie J, Wang Y, Tomasetti C, et al. Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage II colon cancer. Sci Transl Med. 2016;8:346ra92.

322. Chakrabarti S, Xie H, Urrutia R, Mahipal A. The promise of circulating tumor DNA (ctDNA) in the management of early-stage colon cancer: a critical review. Cancers (Basel). 2020;12:12.

323. Tarazona N, Gimeno-Valiente F, Gambardella V, et al. Targeted next-generation sequencing of circulating-tumor DNA for tracking minimal residual disease in localized colon cancer. Ann Oncol. 2019;30:1804–1812.

324. Tie J, Cohen JD, Wang Y, et al. Circulating tumor DNA analyses as markers of recurrence risk and benefit of adjuvant therapy for stage III colon cancer. JAMA Oncol. 2019;5:1710–1717.

325. Berger AW, Schwerdel D, Welz H, et al. Treatment monitoring in metastatic colorectal cancer patients by quantification and KRAS genotyping of circulating cell-free DNA. PLoS One. 2017;12:e0174308.

326. Diehl F, Schmidt K, Choti MA, et al. Circulating mutant DNA to assess tumor dynamics. Nat Med. 2008;14:985–990.

327. Tie J, Kinde I, Wang Y, et al. Circulating tumor DNA as an early marker of therapeutic response in patients with metastatic colorectal cancer. Ann Oncol. 2015;26:1715–1722.

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多