分享

一氧化氮的作用超乎你的想象!!!

 金苹果6 2022-01-21

临床应用

NO在常温下为气体,具有脂溶性是使它在人体内成为信使分子的可能因素之一。它不需要任何中介机制就可快速扩散通过生物膜,将一个细胞产生的信息传递到它周围的细胞中,主要影响因素是它的生物半寿期。具有多种生物功能的特点在于它是自由基,极易参与与传递电子反应,加入机体的氧化还原过程中。分子的配位性又使它与血红素铁和非血红素铁具有很高的亲合力,以取代O2和CO2的位置。据研究报道,血红蛋白-NO可以失去它附近的碱基而变成自由的原血红素-NO,这就意味着自由的碱基可以自由地参与催化反应,自由的蛋白质可以自由地改变构象,自由的血红素可以自由地从蛋白中扩散出去,这三种变化中的任何一个或它们的组合,将在鸟苷酸环化酶的活化过程中起重要作用。NO的生物学作用和其作用机制研究方兴未艾,它的发现提示着无机分子在医学领域中研究的前景。

一氧化氮起着信使分子的作用。当内皮要向肌肉发出放松指令以促进血液流通时,它就会产生一些一氧化氮分子,这些分子很小,能很容易地穿过细胞膜。血管周围的平滑肌细胞接收信号后舒张,使血管扩张。

图片

在泌尿及生殖系统中的作用

一氧化氮作为NANC 神经元递质,在泌尿生殖系统中起着重要作用,成为排尿节制等生理功能的调节物质,这为药物治疗泌尿生殖系统疾病提供了理论依据。

现已证明在人体内广泛存在着以NO为递质的神经系统,它与肾上腺素能、胆碱能神经和肽类神经一样重要。若其功能异常就可能引起一系列疾病。

在神经系统中的作用

有关L-Arg → NO途径在中枢神经系统(CNS)方面的研究认为,NO通过扩散,作用于相邻的周围神经元如突出前神经末梢和星状胶质细胞,再激活GC从而提高水平cGMP水平而产生生理效应。如NO可诱导与学习、记忆有关的长时程增强效应(Long-term potentiation,LTP),并在其LTP中起逆信使作用。

连续刺激小脑的上行纤维和平行纤维可引起平行纤维细胞的神经传导产生长时程抑制(Long-term depression,LTD),被认为是小脑运动学习体系中的一种机制,NO参与了该机制。

在外周神经系统也存在L-Arg → NO途径。NO被认为是非胆碱能、非肾上腺素能神经的递质或介质,参与痛觉传入与感觉传递过程。

NO在胃肠神经介导胃肠平滑肌松弛中起着重要的中介作用,在胃肠间神经丛中,NOS和血管活性肠肽共存并能引起非肾上腺素能非胆碱能(nonadrenergic-non-cholinerrgic,NANC)舒张,但血管活性肠肽的抗体只能部分消除NANC的舒张,其余的舒张反应则能被N-甲基精氨酸消除

在免疫系统中的作用

研究结果表明,NO可以产生于人体内多种细胞。如当体内内毒素或T细胞激活巨噬细胞和多形核白细胞时,能产生大量的诱导型NOS和超氧化物阴离子自由基,从而合成大量的NO和H2O2,这在杀伤入侵的细菌、真菌等微生物和肿瘤细胞、有机异物及在炎症损伤方面起着十分重要的作用。

当前认为,经激活的巨噬细胞释放的NO可以通过抑制靶细胞线粒体中三羧酸循环、电子传递细胞DNA合成等途径,发挥杀伤靶细胞的效应。

免疫反应所产生的NO对邻近组织和能够产生NOS 的细胞也有毒性作用。某些与免疫系统有关的局部或系统组织损伤,血管和淋巴管的异常扩张及通透性等,可能都与NO在局部的含量有着密切的关系。

心脑血管的作用机理

一氧化氮是氮的化合物,化学式NO,分子量30,氮的化合价为+2。由于一氧化氮带有自由基,这使它个化学性质非常活泼。具有顺磁性。当它与氧反应后,可形成具有腐蚀性的气体——二氧化氮(NO2)。一氧化氮在标准状况下为无色气体,液态、固态呈蓝色。一氧化氮改善心脑血管的作用机理。

各类含氧氮化合物的构型

一氧化氮的产生大致分为2种,一种是酶生性一氧化氮,一种是非酶生性一氧化氮。

非酶生性通过供体生成如硝酸甘油、硝普纳等临床药物产生。酶生性必须有酶的参与,同时也要有前体物质的。这种酶称为一氧化氮合酶(NOS),人体内有3种此类酶,分为内皮型一氧化氮合酶,分布于血管内皮细胞;神经型一氧化氮合酶,分布于人体神经元细胞当中;最后一种叫诱导型一氧化氮合酶,分布于人体免疫细胞当中如淋巴、T细胞当中。

其中以海洋生物为主要原料提取出来的酶一种内皮一氧化氮合酶 学术名称:“一氧化氮海洋合酶” (NOSS),这种酶的活性更高,可以在增强体内一氧化氮循环机制作用,源源不断的产生一氧化氮。但是这种酶很少见,必须是由海洋生物尖海龙、牡蛎、鱼精蛋白等海洋珍贵物种才能提取产生出来。酶生性一氧化氮的合成公式是 L-精氨酸 + NOS + O2 = NO + L-瓜氨酸, 瓜氨酸又可以通过一些列的化学反应生成精氨酸。

在血管内皮细胞里产生的一氧化氮气体,由于它是脂溶性的,所以很快渗透出细胞膜向下扩散进入平滑肌细胞,从而作用于平滑肌细胞,使其松弛,扩张血管,最终导致血压的下降!同时也会很快渗透出细胞膜向上扩散进入血液,进入血小板细胞,使血小板活性降低,抑制其凝集和向血管内皮的粘附,从而防止血栓的形成,防止动脉粥样硬化的发生。从生化角度来讲,一氧化氮是一自由基气体,携带一个未配对电子,在体内极不稳定,这一特性恰好和其它游离自由基一样。这样两者就非常容易结合产生反应。从而使体内自由基数量大大减少。由于一氧化氮本身的合成需要一氧化氮合酶(NOS)的参与,但是正常情况下NOS的活性很低,需要硝基类药物或者皂甙类活性物质的激活。因此一氧化氮最佳的产生效果是和人参皂甙类物质一起协同作用。

一氧化氮与人体功能

一氧化氮发现(nitric oxide,NO)广泛分布于生物体内各组织中,特别是神经组织中。它是一种新型生物信使分子,1992年被美国Science杂志评选为明星分子。NO是一种极不稳定的生物自由基,分子小,结构简单,常温下为气体,微溶于水,具有脂溶性,可快速透过生物膜扩散,生物半衰期只有3-5s,其生成依赖于一氧化化氮合成酶(nitric oxide synthase,NOS)并在心、脑血管调节、神经、免疫调节等方面有着十分重要的生物学作用。因此,受到人们的普遍重视。

NO生物活性的发现

医学知识告诉我们,有两种重要的物质作用于血管平滑肌,它们分别是去甲肾上腺素和乙酰胆碱。去甲肾上腺素通过作用于血管平滑肌细胞受体而使其收缩。对于乙酰胆碱是如何作用于血管平滑肌使之舒张,其途径尚不清楚,医学界一起在致力于研究。

1980年,美国科学家Furchgott 在一项研究中发现了一种小分子物质,具有使血管平滑肌松弛的作用,后来被命名为血管内皮细胞舒张因子(endothelium-derived relaxing factor,EDRF)是一种不稳定的生物自由基。并进入相邻平滑肌细胞,在平滑肌细胞内,EDRF激活鸟苷酸环化酶,导致cGMP水平升高,cGMP激活PKG,使平滑肌松弛,然而,EDRF被确认为是NO。众所周知,硝酸甘油是治疗心胶痛的药物,多年来人们一直希望从分子水平上弄清楚其治疗机理。研究发现,硝酸甘油和其它有机硝酸盐本身并无活性,它们在体内首先被转化为NO,是NO刺激血管平滑肌内cGMP形成而使血管扩张,这种作用恰好同EDRF具有相似性。1987年,Moncada等在观察EDRF对血管平滑肌舒张作用的同时,用化学方法测定了内皮细胞释放的物质为NO,并据其含量,解释了其对血管平滑肌舒张的程度。1988年,Polmer等人证明,L-精氨酸(L-argi-nine,L-Arg)是血管内皮细胞合成NO的前体,产物是瓜氨酸和NO,过程由NO合酶(nitric oxide synthase,NOS)催化[7] ,从而确立了哺乳动物体内可以合成NO的概念。

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多