分享

辛克莱教授“钦点”的BCAA,果真抗衰不成反伤身?

 新用户0641yy4L 2022-02-23
图片

近年来,抗衰老行业得以飞速发展,离不开领域内多位学界大佬的硬核加持,就职于哈佛大学医学院的大卫·辛克莱(David A. Sinclair)教授便是个中翘楚,2014年,他还被美国《时代周刊》杂志评选为“全球最具影响力百大人物”。

作为业界标杆人物,辛克莱教授的抗衰心得一直为大众津津乐道。从转发最新研究动态,到日常生活分享,他在Twitter上人气可不低,算得上是位“流量博主”。早在2019年,他曾发布一条动态,劝告读者们“深思熟虑BCAA的摄入”。

图片

这个本质上不过是类氨基酸的物质,怎得还能抗衰不成反折寿?考虑到BCAA对于不少读者也不是个新鲜事物,不少人说不定曾经或正在尝试。这期我们就一起来聊聊——“BCAA究竟是好是坏”“我是否需要BCAA?”又或者“我应该如何正确服用BCAA?

图片

BCAA体内代谢:不走寻常路

BCAA是亮氨酸异亮氨酸缬氨酸三种必需氨基酸的统称。它们无法由机体自主合成,需从外界直接摄取,大多数高蛋白食物,如肉类、乳制品、豆类等,均含有丰富的BCAA。

无论从饮食中直接获取,还是短期饥饿后肌肉蛋白质水解,BCAA在体内的代谢过程大致分为以下两步[1]。

起点:骨骼肌

与大多数氨基酸不同,由于BCAA分解代谢途径中的第一种酶BCAT(支链氨基酸氨基转移酶)的肝脏活性较低。因此,BCAA不走“寻常路”(从肝脏开始),转向骨骼肌作为自己的首发站。

在骨骼肌中,BCAA经过BCAT催化,转化为BCKAs(支链酮酸,包括KMV、KIV等),并产生谷氨酰胺丙氨酸,共同进入血液。

下一站:多组织线粒体

进入血液循环后,BCKAs会到达肝脏肾脏脂肪等多个组织,在线粒体内膜上BCKDH(支链α-酮酸脱氢酶复合物)的作用下氧化脱羧,生成相应的支链酰基辅酶A酯类。这些底物可以进入三羧酸循环,或以糖原甘油三酯的形式储存[2]。

图片

图注:BCAA分解代谢的主要途径

值得一提是,BCKDH作为BCAA分解代谢途径的限速酶[3],在肝脏中的活性最高,并受到多种因素调控,如BCAA的含量与磷酸化水平[4]以及多种代谢因子(如IGF-1、TNFα、皮质醇)[1]等。

图片

BCAA与机体代谢:时而有雨时而晴

仅从BCAA的代谢过程,就可以初步断言其对维持机体能量稳态的重要作用,或许这正是它在补剂市场上受到追捧的原因之一。

当前,不少研究已经发现,BCAA与生物体蛋白质合成乳腺健康胚胎发育肠道免疫功能均有显著关联[5]。尤其对于葡萄糖脂质代谢,更是“掌控力”满满。

BCAA与葡萄糖代谢:爱恨交织的长诗

维持机体正常血糖水平,对保证能量稳态意义深远。BCAA对葡萄糖转运过程的调控已经得到证实[6],例如亮氨酸能通过上调胰岛素水平,增强GLUT4和GLUT1(葡萄糖转运蛋白)易位[7],并激活PI3KPKC信号通路[8],增加骨骼肌中葡萄糖的摄取。

然而,“福兮祸所伏”,BCAA的血糖调节作用也不是一路长红。若过量摄入BCAA,会持续激活mTORC1,使胰岛素受体信号介质IRS-1分离,诱导胰岛素抵抗[9],使得葡萄糖代谢受损[10]。

但BCAA与胰岛素间的逻辑关系又似乎不那么简单。另一种观点认为,BCAA可能是胰岛素抵抗的标志,而不是原因,因为胰岛素抵抗会抑制BCKDH活性[11],导致BCAA代谢异常积累,引发一系列线粒体功能障碍应激信号[9]。

图片

BCAA与脂质代谢:背后一刀的盟友

“高蛋白低碳水”、“一天十几个鸡蛋白”,诸如此类的减重方法,可能不少读者在控制体重时都曾尝试。但不加限制狂吃蛋白质,对我们的脂肪代谢可能并不友好。

虽说,适当补充BCAA能增加细胞中乙酰辅酶A的水平,并抑制丙酮酸脱氢酶活性,将能源偏好由碳水化合物转移到脂质,帮助控制肥胖[12]。

但在一项小鼠试验中却发现,长期补充BCAA不仅让它们吃得更多长得更胖,还缩短了这些小鼠10%的寿命,而限制BCAA摄入后,其健康状况得到扭转[13]。同时,2016年一项针对2000余名我国汉族人群的大规模研究也表明,体内BCAA水平与血脂代谢异常(表现为总胆固醇高、高密度脂蛋白低)呈现正相关[14]。

为何多吃了些氨基酸,反而影响代谢、更易长肥肉?

目前推测限制BCAA后,一方面可能通过AMPK-mTOR-FoxO1途径,影响肝脏脂肪相关基因(如ACCα与SCD-1)表达[15],并激活GCN2通路[16],帮助控制食欲减少脂肪合成加快脂肪酸氧化;另一方面,还可能通过调控限速酶BCKDH下游信号,影响脂质代谢[17]。

图片
图片

 BCAA与延年益寿:

小酌怡情,贪杯伤身

长寿通路对生物体寿命的影响及其调控机制,是无数学者与极客们的奔赴之地。对于BCAA,好像无论走哪条路,mTOR这个点是如何也绕不过去的。

一直以来,根深蒂固刻在我们脑海中的“铁律”是——抑制mTOR通路,有助于延长寿命。这也是多种“不老药”(如雷帕霉素)的作用原理。然而,到了BCAA这儿,情况却好像有点不同。

全网大搜索后,派派总结了目前BCAA对模式物种(有广泛研究,对其生物现象有深入了解[18])寿命影响的试验(见下表)。这些结果虽然很难直接类比人类,但借助这些探索,我们也许能为未来可能的人体临床试验找到方向。

图片

这些外表看似毫无关联的试验结果,实则一番仔细分析后,都指向同一点:限制BCAA是有必要的,过高或过低的BCAA都可能对机体能量稳态、神经系统与肠道健康等方面造成损害,并最终影响寿命。

图片

《BCAA服用建议》

BCAA不能少,但也绝不可多。在进行严谨的科学检测之前,大家或许想知道:我如何预判自己是否需要额外补充BCAA?又该如何正确去补充?

如果你有此类疑问,不如联系时光派专属小助理Hebe,发送暗号、领取为你精心整理的“《BCAA服用建议》”,一睹为快吧~

—— TIMEPIE ——

参考文献

[1] Holeček, M. Branched-chain amino acids in health and disease: metabolism, alterations in blood plasma, and as supplements. Nutr Metab (Lond) 15, 33 (2018). https:///10.1186/s12986-018-0271-1

[2] Liu, S., Miriyala, S., Keaton, M. A., Jordan, C. T., Wiedl, C., Clair, D. K., & Moscow, J. A. (2014). Metabolic effects of acute thiamine depletion are reversed by rapamycin in breast and leukemia cells. PloS one, 9(1), e85702. https:///10.1371/journal.pone.0085702

[3] East, M. P., Laitinen, T., & Asquith, C. (2021). BCKDK: an emerging kinase target for metabolic diseases and cancer. Nature reviews. Drug discovery, 20(7), 498. https:///10.1038/d41573-021-00107-6

[4] Zhang, Z. Y., Monleon, D., Verhamme, P., & Staessen, J. A. (2018). Branched-Chain Amino Acids as Critical Switches in Health and Disease. Hypertension (Dallas, Tex. : 1979), 72(5), 1012–1022. https:///10.1161/HYPERTENSIONAHA.118.10919

[5] Zhang, S., Zeng, X., Ren, M. et al. Novel metabolic and physiological functions of branched chain amino acids: a review. J Animal Sci Biotechnol 8, 10 (2017). https:///10.1186/s40104-016-0139-z

[6] Nishitani, S., Takehana, K., Fujitani, S., & Sonaka, I. (2005). Branched-chain amino acids improve glucose metabolism in rats with liver cirrhosis. American journal of physiology. Gastrointestinal and liver physiology, 288(6), G1292–G1300. https:///10.1152/ajpgi.00510.2003

[7] Nishitani, S., Takehana, K., Fujitani, S., & Sonaka, I. (2005). Branched-chain amino acids improve glucose metabolism in rats with liver cirrhosis. American journal of physiology. Gastrointestinal and liver physiology, 288(6), G1292–G1300. https:///10.1152/ajpgi.00510.2003

[8] Doi, M., Yamaoka, I., Fukunaga, T., & Nakayama, M. (2003). Isoleucine, a potent plasma glucose-lowering amino acid, stimulates glucose uptake in C2C12 myotubes. Biochemical and biophysical research communications, 312(4), 1111–1117. https:///10.1016/j.bbrc.2003.11.039

[9] Lynch, C., Adams, S. Branched-chain amino acids in metabolic signalling and insulin resistance. Nat Rev Endocrinol 10, 723–736 (2014). https:///10.1038/nrendo.2014.171

[10] Stephen L. Aronoff, Kathy Berkowitz, Barb Shreiner, Laura Want. Glucose Metabolism and Regulation: Beyond Insulin and Glucagon. Diabetes Spectrum Jul 2004, 17 (3) 183-190. https:///10.2337/diaspect.17.3.183

[11] Siddik, M., & Shin, A. C. (2019). Recent Progress on Branched-Chain Amino Acids in Obesity, Diabetes, and Beyond. Endocrinology and metabolism (Seoul, Korea), 34(3), 234–246. https:///10.3803/EnM.2019.34.3.234

[12] Kainulainen, H., Hulmi, J. J., & Kujala, U. M. (2013). Potential role of branched-chain amino acid catabolism in regulating fat oxidation. Exercise and sport sciences reviews, 41(4), 194–200. https:///10.1097/JES.0b013e3182a4e6b6

[13] Solon-Biet, S.M., Cogger, V.C., Pulpitel, T. et al. Branched-chain amino acids impact health and lifespan indirectly via amino acid balance and appetite control. Nat Metab 1, 532–545 (2019). https:///10.1038/s42255-019-0059-2

[14] Yang, P., Hu, W., Fu, Z. et al. The positive association of branched-chain amino acids and metabolic dyslipidemia in Chinese Han population. Lipids Health Dis 15, 120 (2016).

[15] Bai, J., Greene, E., Li, W., Kidd, M. T., & Dridi, S. (2015). Branched-chain amino acids modulate the expression of hepatic fatty acid metabolism-related genes in female broiler chickens. Molecular nutrition & food research, 59(6), 1171–1181. https:///10.1002/mnfr.201400918

[16] Guo, F., & Cavener, D. R. (2007). The GCN2 eIF2alpha kinase regulates fatty-acid homeostasis in the liver during deprivation of an essential amino acid. Cell metabolism, 5(2), 103–114. https:///10.1016/j.cmet.2007.01.001

[17] White, P. J., McGarrah, R. W., Grimsrud, P. A., Tso, S. C., Yang, W. H., Haldeman, J. M., Grenier-Larouche, T., An, J., Lapworth, A. L., Astapova, I., Hannou, S. A., George, T., Arlotto, M., Olson, L. B., Lai, M., Zhang, G. F., Ilkayeva, O., Herman, M. A., Wynn, R. M., Chuang, D. T., … Newgard, C. B. (2018). The BCKDH Kinase and Phosphatase Integrate BCAA and Lipid Metabolism via Regulation of ATP-Citrate Lyase. Cell metabolism, 27(6), 1281–1293.e7. https:///10.1016/j.cmet.2018.04.015

[18] https://zh./wiki/%E6%A8%A1%E5%BC%8F%E7%94%9F%E7%89%A9

[19] Edwards, C., Canfield, J., Copes, N., Brito, A., Rehan, M., Lipps, D., Brunquell, J., Westerheide, S. D., & Bradshaw, P. C. (2015). Mechanisms of amino acid-mediated lifespan extension in Caenorhabditis elegans. BMC genetics, 16(1), 8. https:///10.1186/s12863-015-0167-2Cite this article

[20] Mansfeld, J., Urban, N., Priebe, S. et al. Branched-chain amino acid catabolism is a conserved regulator of physiological ageing. Nat Commun 6, 10043 (2015). https:///10.1038/ncomms10043

[21] D'Antona, G., Ragni, M., Cardile, A., Tedesco, L., Dossena, M., Bruttini, F., Caliaro, F., Corsetti, G., Bottinelli, R., Carruba, M. O., Valerio, A., & Nisoli, E. (2010). Branched-chain amino acid supplementation promotes survival and supports cardiac and skeletal muscle mitochondrial biogenesis in middle-aged mice. Cell metabolism, 12(4), 362–372. https:///10.1016/j.cmet.2010.08.016

[22] Iwasa, M., Kobayashi, Y., Mifuji-Moroka, R., Hara, N., Miyachi, H., Sugimoto, R., Tanaka, H., Fujita, N., Gabazza, E. C., & Takei, Y. (2013). Branched-chain amino acid supplementation reduces oxidative stress and prolongs survival in rats with advanced liver cirrhosis. PloS one, 8(7), e70309. https:///10.1371/journal.pone.0070309

[23] Tournissac, M., Vandal, M., Tremblay, C., Bourassa, P., Vancassel, S., Emond, V., Gangloff, A., & Calon, F. (2018). Dietary intake of branched-chain amino acids in a mouse model of Alzheimer's disease: Effects on survival, behavior, and neuropathology. Alzheimer's & dementia (New York, N. Y.), 4, 677–687. https:///10.1016/j.trci.2018.10.005

[24] Richardson, N.E., Konon, E.N., Schuster, H.S. et al. Lifelong restriction of dietary branched-chain amino acids has sex-specific benefits for frailty and life span in mice. Nat Aging 1, 73–86 (2021). https:///10.1038/s43587-020-00006-2

[25] Lu, J., Temp, U., Müller-Hartmann, A. et al. Sestrin is a key regulator of stem cell function and lifespan in response to dietary amino acids. Nat Aging 1, 60–72 (2021). https:///10.1038/s43587-020-00001-7

[26] Juricic, P., Grönke, S., & Partridge, L. (2020). Branched-Chain Amino Acids Have Equivalent Effects to Other Essential Amino Acids on Lifespan and Aging-Related Traits in Drosophila. The journals of gerontology. Series A, Biological sciences and medical sciences, 75(1), 24–31. https:///10.1093/gerona/glz080

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多