分享

全面的遗传分析揭示了单基因尿路结石疾病的复杂性

 医学镜界 2022-06-03 发布于江苏

全面的遗传分析揭示了单基因尿路结石疾病的复杂性

https:///10.1016/j.ekir.2021.08.033

      据估计,尿石病 (USD) 的全球患病率为 ∼12%1、2、3,并且与显著的发病率(包括疼痛、住院和外科手术)以及医疗程序的经济成本和工作时间损失有关。4肾钙质沉着症 (NC) 不如 USD 普遍,但通常与严重形式的 USD 和慢性肾脏病 (CKD) 有关。超过 50% 的 USD 患者可发现复发5并且可能与进行性 CKD 相关。1饮食、饮水和环境是可能影响结石形成的因素,饮食/生活方式的改变可能导致最近西方国家 USD 患病率的增加。6然而,由于高达 50% 的 USD 患者有一级亲属受累,2,3,7全基因组关联研究(GWAS)已将多个变异与美元联系起来,8,9遗传危险因素也很重要。事实上,∼40尿路结石和/或NC疾病是单基因疾病。7,10最近,临床肾脏病学中的下一代测序(NGS)方法,包括靶向基因组合(tNGS)和全外显子组测序(WES),揭示了单基因疾病作为CKD和终末期肾病(ESKD)病因的重要性。11在结石形成人群中使用30个已知的USD / NC致病基因的小组来应用tNGS,确定11.4%的成人和20.8%的儿科人群可能有单基因病因。12在 25 岁之前就诊的 USD 患者中,WES 在 51 例病例中有 15 例 (29.4%) 确定了可能的致病基因。

      单基因 USD/NC 往往比散发性 USD 更严重,诊断和症状发作较早,CKD 风险更高。7基因筛查很重要,因为临床表型可能无法确定疾病的确切原因,特别是如果仅进行有限的生化研究。权宜之计对早期开始治疗疾病具有重要意义。基于特定基因甚至等位基因类型的临床试验正在进行中,针对特定单基因USD/NC疾病的新疗法迅速出现。 确定性遗传诊断可有助于识别其他高危家庭成员,并可能影响计划生育决策。已确定 USD/NC 的主要(单allelic)和 X 连锁病因;然而,大多数家庭具有隐性(双性)遗传,在血缘关系较高的人群中丰富,这些人群往往在医学上服务不足。尽管在更广泛的基因筛查后,改善患者护理的前景很大,但根据特定疾病和患者表型仔细评估结果的重要性,以及应用严格的指南来评估遗传变异,是至关重要的,因为导致不适当治疗的误诊可能比没有诊断更具破坏性。

       USD 和 NC 的两个特征明确的单基因病因是原发性高草酸尿症 (PH) 和 Dent 病 (DD)。原发性高草酸血症是一种肝脏乙醛酸盐代谢紊乱,其特征是草酸盐生成过剩,导致尿草酸钙过饱和和复发性 USD 和/或 NC,并经常导致肾功能丧失,可进展为 ESKD。20,213个独立基因的双歧杆菌致病变异导致已知类型的PH:AGXT(PH1),GRHPR(PH2)和HOGA1(PH3)。22、23、24、25、26 Dent 病是一种 X 连锁隐性疾病,其特征为低分子量蛋白尿 (LMWP)、高钙尿症和 NC,也可能引起 ESKD。已知的2个DD基因是CLCN5(DD1)和OCRL(DD2)。27,28,29,30在这里,我们使用tNGS重新筛选临床怀疑患有PH或DD但未从靶向Sanger分析中解决的患者队列。这项研究揭示了单基因USDs之间显着的表型重叠,因此,当怀疑单基因USD时,说明了广泛筛查方法的价值。此外,仔细的变异评估还确定了多种遗传因素可能导致表型的病例。

材料和方法

招聘

稀有肾结石联盟(RKSC)旨在更好地了解USD / NC的遗传形式。31 所有患者都为参加研究方案提供了签名的同意书,该协议已获得相关机构审查委员会或伦理委员会的批准。机构审查委员会方案允许对疑似单基因 USD/NC 的患者进行招募和广泛的基因组分析。RKSC合作者和研究协调员团队在全球合作的RKSC站点确定并同意患者和家庭成员。当前队列中的患者是由于怀疑PH或DD而被确定的,包括存在USD和/或NC,通常在18岁之前就诊,和/或患有CKD;然而,由于隐性(PH)和X连锁(DD)疾病是重点,我们不需要阳性家族史。疑似 PH 值患者通常有高草酸尿症和/或重度草酸钙结石病的证据,而 LMWP 和明显的 X 连锁遗传模式提示 DD。然而,详细的生化数据并不总是可用的,研究人员在决定是否继续进行基因检测时,在敏感性而不是特异性方面犯了错误。收集血液样本,并使用Trinean平台分离,评估和定量DNA,并将其存储在Mayo Clinic Biospecimens加入和处理核心。

PH和DD患者的桑格筛查

该队列先前通过Sanger测序筛选了3个PH基因的所有编码外显子(AGXT,NM_000030.2;GRHPR, NM_012203.1;HOGA1,NM_138413.3)或2个DD基因(CLCN5,NM_000084.2;OCRL,NM_000276),取决于临床怀疑。26所有Sanger色谱图均使用突变测量员(版本4.06;SoftGenetics,State City,PA)和已鉴定的变异使用美国医学遗传学和基因组学学院(ACMG)指南对致病性进行分类。19

NGS 文库生成和测序

下一代测序使用90个基因(编码区171 kb,总捕获区485 kb)或102个基因(编码区211 kb;总捕获区560 kb)的tNGS面板进行,这些基因含有已知的单基因USD / NC基因,以及对钙代谢或尿液成分重要的候选基因,包括草酸盐,柠檬酸盐,尿酸, 或 pH 值(表 S1)。我们之前的tNGS和变异评估方法已经描述过32,33并在补充方法中详细规定。

结果分布

研究筛查结果被报告给转诊医生,并要求在临床使用之前在CLIA批准的实验室中确认。

结果

基因筛查

先前对 703 个疑似 PH 的家族进行的重点 Sanger 筛查确定 268 个为 PH1、47 PH2 和 52 PH3(分别为 73.0%、12.8% 和 14.2% 的已解决家族),其中一个子集已发表,25,26,34,35而336个(占总数的47.8%)是遗传阴性的(PHN)(图1a)。在111个疑似DD的家庭中,44个有DD1和7 DD2(分别占已解决的86.3%和13.7%),而60个(占总数的54.1%)仍未解决(DDN)。表S2包含新的,未发表的Sanger检测到的PH和DD基因变异的细节。

  1. 下载 : 下载高分辨率图片 (689KB)

  2. 下载 : 下载全尺寸图片

图 1.流程图显示了疑似原发性高草酸尿症 (PH) 和 Dent 病 (DD) 浮肿的研究设计。(a) 显示Sanger分辨人群的组成以及使用靶向下一代测序(tNGS)面板筛选的PH阴性(PHN)和DD阴性(DDN)患者的数量 。(b) 从PHN(左)和DDN(右)种群的tNGS中检测到突变基因。(c) 已解决的双列(左)和单白细胞(右)家族中相关基因的总体摘要。

当前研究的重点是具有可用DNA的285 PHN和59个DDN家族(图1a)。用90个(n = 279)或102个(n = 65)已知或候选USD / NC基因的tNGS小组重新筛选这些PHN和DDN家族(表S1),以确定其他单基因USD基因是否可能解释其表型。使用ACMG指南对变异进行严格评估,以检测出的变异(详见补充方法),以仔细识别可能的单基因受试者。根据该分析,在45个家族(13.1%),29个PHN(10.2%)和16个DDN(27.1%)中发现了由于已知单基因USD基因变异引起的疾病可能原因(遗传和临床细节见图1b和表1)。在已解决的病例中,27例(60.0%)患有双列子病,18例(40.0%)患有单动脉疾病,涉及14个不同的基因(图1c)。在48个已定义的致病变异中,19个(39.6%)是新颖的,13个(27.1%)被截断(评分和ACMG指南评估的详细信息见表2363738394041424344454647484950515253)。

原发性高草酸尿症

实际上,使用tNGS面板重新分析发现两个PHN家族具有PH,因为Sanger筛选错过了CNV。在PHN244 中,通过NGS的CNV分析在纯合性中检测到从5'AGXT到IVS2的大量缺失,并通过MLPA证实,这也存在于亲本双方的杂合性中(表12)。在第二家族PH2-6中,先前的Sanger分析检测到1 GRHPR等位基因上有2-bp缺失,但重新分析也检测到第二个可能的致病变异,即通过CNV分析NGS大幅度缺失外显子3至5。

家族性低镁血症伴高钙尿症和 NC

Claudins 16 和 19(由 CLDN16 和 CLDN19 编码)调节钙和镁的转运,双性粒细胞致病变异与家族性低镁血症伴高钙尿症和 NC (FHHNC) 相关。38,54我们队列中最常见的双过敏突变基因是CLDN16,在8个谱系中发现,其中7个来自PHN队列(图1;表1、2)。检测到7种不同的致病变异,其中3种是新颖的。有趣的是,所有8例病例都是纯合子,每个家庭都知道或怀疑血缘关系。所有受试者都是在童年时期被诊断出来的;6人有NC,4人有美元,4人有ESKD。在2名男性患者中,在第二个克劳丁基因CLDN19中也检测到双列子变异。两例患者均为纯合子,1例为新型变异型;两人均患有 NC,1 名患者出现 ESKD。

低磷血症/高钙结石形成伴骨缺损

近端肾小管钠依赖性磷酸转运蛋白 2A(NaPi-IIa,由 SLC34A1 编码)或 2C(NaPi-IIc,由 SLC34A3 编码)丢失导致肾脏 Pi 重吸收减少,双纯疱性致病变异与低磷血症和高钙尿症有关。46,47,55报告还表明,这些位点的单allelic变体与NC和USD有关,GWAS与共同USD中的SLC34A1变体有关。8,56,57,58在该队列中,鉴定出SLC34A3(4家族)或SLC34A1(1家族)的双系致病变异。在DDN队列中发现所有4名SLC34A3患者;1个是纯合子,2个等位基因是新颖的,在2个家族中检测到3个可能显着的等位基因(表1和2;图2a、b47).还检测到非典型剪接(图2c49表 2)。所有双列病例均有美元,3例有NC,但没有一例有ESKD(图3a)。双列性SLC34A1病例来自PHN队列和纯合子。SLC34A1患者患有NC,但不知道美元。599例单allelic SLC34A3病例具有一致的表型,其中4例具有先前描述的错义变异p.Ser192Leu。60两名患者有第二个SLC34A3变异,其评分为意义不确定的变异(VUS)(表1,3)。其中,5人患有USD,4人患有NC,2人肾功能下降。2例患者为单allelic的SLC34A1致病变异;1例患者还患有SLC34A1 VUS,第2例患者患有SLC34A3 VUS(表 1,3)。

  1. 下载 : 下载高分辨率图片 (2MB)

  2. 下载 : 下载全尺寸图片

图 2.来自5个家庭的遗传结果的例子。(a) DDN有3个SLC34A3变体:c.413C>T (p.Ser138Phe);c.1576_1578del(p.Leu527del);和c.448 + 1G>A(p.Lys149?分析来自其他家族的数据(未显示)和已发表的数据47 表明c.413C>T(p.Ser138Phe)和c.1576_1578del(p.Leu527del)在同一等位基因上是相似的。对tNGS读数的分析表明,c.413C>T(p.Ser138Phe)和c.448 + 1G>A(p.Lys149?)位于不同的等位基因上(左),显示Sanger序列(右),因此该患者具有双列基因型。(b) 患者DDN41也有3种SLC34A3变体:c.1453C>T(p.Arg485Cys);c.1454G>A (p.Arg485His);和c.1585A>T(p.Ile529Phe)。p.Arg485的守恒显示在多序列比对中(左),来自靶向下一代测序(tNGS)的相位数据显示c.1453C>T(p.Arg485Cys)和c.1585A>T(p.Ile529Phe)位于相同的等位基因上,c.1454G>A(p.Arg485His)位于另一个等位基因上。(c)患者DDN39有2个SLC34A3变体,IVS5内内内膜缺失30 bp,c.560 + 23_561-42del(p.Arg187?),加上错义变体c.1058G>T(p.Arg353Leu)。下一代测序(NGS)中显示的缺失读数(左)和Sanger序列(右)留下了一个非常小的内含子(65 bp),可能无法有效切除。49(d) 在PHN2谱系(左)中,3个兄弟姐妹患有终末期肾病(ESKD),2个兄弟姐妹(有样本可用);PHN2-1和PHN2-2)在纯合子中检测到非典型剪接变体c.81-3C>G(p.Asp28?)到APRT,由NGS(中心)和Sanger序列(右)显示。IVS1中的这种新型变体预计将消除接头受体位点。(e)在PHN20中,使用90基因组合检测到ABCG2SPP1基因(chr 4q)的CNV缺失。随访微阵列分析检测到包含72个基因的18Mb缺失(左)。(右)。

  1. 下载 : 下载高分辨率图片 (165KB)

  2. 下载 : 下载全尺寸图片

图 3.原发性高草酸尿-阴性 (PHN) 和 Dent 病阴性 (DDN) 队列的肾脏影像学检查,描述肾脏表型谱。(a) 腹部计算机断层扫描 (CT),无 DDN6 与双列 SLC34A3 致病变异的双列 SLC34A3 致病变异的对比,显示弥漫性重度髓钙质沉着症 (NC)。(b) DDNA36 伴 Bartter 综合征 2 型的 CT,由于 KCNJ1 致病变异显示轻度 NC 加结石。(c) DDN51 CT 与单一碱性 CYP24A1 致病变异体,显示微小的花梢尖结石。

24-羟化酶缺乏引起的婴儿高钙血症

CYP24A1编码酶24-羟化酶,其将维生素D的活性形式代谢为无活性形式。双亚勒病原菌变异与低磷血症、高钙血症、高钙尿症、NC 和 USD 有关,40偶尔也曾描述单一硬化性疾病。78在3个受试者(其中1个是纯合子)中鉴定出双列CYP24A1致病性变化,其中1个新变体(表1,2)。所有人都有NC,2人是儿童或年轻人,但只有1人经历过ESKD。1例具有典型CYP24A1缺乏性表型的患者为单allelic(表 1;图 3C).

腺嘌呤磷酸核糖基转移酶缺乏症 (APRTd)

双列抗胰腺素 APRT 致病变异导致不溶性嘌呤 2,8-二羟基腺嘌呤 (DHA) 在肾脏、USD 和 CKD 中蓄积。79, 80, 81 两个家族是新型APRT致病变异体、起始密码子置换(PHN201)或非典型剪接变异型(PHN2)的纯合子(表12)。PHN2是一个近亲家庭,包括3个兄弟姐妹与ESRD;预计APRT c.81-3C>G非典型剪接变化将大大削弱供体部位(图2d)。随后的生化分析证实,APRT水平非常低。

巴特综合征

6 个基因的双列基因致病变异可引起 Bartter 综合征,该病的特征是 Henle 厚厚的上行环中钠重吸收受损,导致盐耗、低钾血症性代谢性碱中毒和高钙尿症。三个家族(2个DDN)对巴特病基因具有双列致病变异,2个家族编码 ROMK通道的KCNJ165(1个纯合子和2个新的错义变化)和1个编码NKCC2的SLC12A183其中两名受试者是儿童,均患有NC,2名受试者患有USD(图3b)。

远端肾小管性酸中毒 (dRTA)

在2个dRTA基因ATP6V1B1中发现了双列基因变异36和 SLC4A1。84这些DDN病例中的每一个对于已知的致病变异都是纯合子的。此外,2例NC患儿具有单一已知的SLC4A1致病变异51 (表1、2)。

显性范可尼综合征

2 例 Fanconi 综合征、严重骨病和 NC 患者对转录因子 HNF4A 具有单一已知的致病变异85 (表1、2)。

常染色体显性遗传性低钙血症

一名患有低钙血症性癫痫发作和NC的受试者在婴儿时期对钙敏感受体基因CASR具有单一的已知致病变异(表1,2)。86

拷贝数变体

一名患有多结石且生长迟缓的婴儿被发现有一个包含72个基因的18.8 Mb 4号染色体缺失。由于ABCG2SPP1的CNV,这最初是由tNGS检测到的,并通过微阵列分析得到证实(图2e)。

其他DOLL/NC基因变异

除了可能已解决的病例外,在另外42个家族中检测到感兴趣的变异,包括11个具有1个以上变异的变异.此外,9个可能已解决的族具有其他感兴趣的变体(表1)。可能对表型具有显著意义的变体以粗体字显示在表1,表2,表3中。这些感兴趣的变异包括29个先前描述的致病性变化或已知USD基因的截断变异。作为一些例子,3名具有罕见的单allelic SLC34A1变体(1个截断)的患者和3个具有单个SLC34A3 VUS的患者的表型被认为不能完全解释这些变体(表3,4;图 S1A)。另外10名受试者是已知(7)或疑似(3)致病性CYP24A1变体(3)的单allelic,包括4个具有其他感兴趣的变体(表4;另见讨论)。HNF4A错义变化的意义预测会改变剪接(表3),并在ClinVar中被描述为VUS,这在PHN71中尚不清楚。胱氨酸尿基因的单一致病变异被描述为有时占主导地位87并在4个家族中被发现,但没有一个有胱氨酸结石的记录史。

讨论

           在临床怀疑PH或DD但各自致病基因缺乏致病变异的这组患者中,tNGS小组确定10.2%(PHN)或27.1%(DDN)是由于其他已知的USD / NC相关基因中的致病变异。原发性高草酸尿症和Dent病具有完全不同的致病性起源,我们在该队列中发现的其他疾病也是如此。然而,通常存在 USD、NC 和 CKD,尿钙排泄增加是一个共同特征。7我们的研究证明了使用广泛的方法对怀疑单基因USD的患者进行遗传筛查的价值,因为可能的遗传原因通常不容易从临床或生化数据中辨别出来,这些数据可能受到生物变异的影响并且可能难以解释,特别是在年幼的儿童中。因此,我们的研究支持在疑似单基因USD患者中增加临床分子检测的使用。票价:11、12、13 元,58,88,89在美国,临床基因检测现在只需几百美元,而且通常由保险承保。除了确诊的积极结果外,还可以通过减少对不必要的后续放射学和/或生化筛查的需求以及使用可能具有显着副作用的无效治疗来节省成本。89然而,对于商业检测,在患者特定情况下进行解释是一个重要的考虑因素。最终,订购提供者必须具有专业知识或专业知识,才能以患者特定的方式解释结果。89

在我们现在已经解决的67个疑似DD家族(Sanger和NGS)中,有16个(23.9%)是由于其他基因的缺陷,这是DD2(7;10.4%)的两倍,其中4个(6.0%)病例由SLC34A3致病变异体组成。在疑似PH家族中,396例(7.3%)中有29例是由于其他基因引起的,其中SLC34A3CLDN16最常受累(分别为9例[2.3%]和7例[1.8%])。发现 CLDN16、CLDN19、SLC34A3 和 KCNJ1 的致病变异可同时解释 PH 和 DD 疑似患者。由于最初招募患者时的标准比较宽松,以最大限度地提高敏感性,因此新解决的家族增加了我们对可能具有相似临床特征的单基因USD/ NC组的了解。

       血浆草酸盐或尿草酸盐排泄增加是 PH 值的可靠指标。然而,血浆草酸盐可能难以测量,因为它仅由相对较少的参考实验室提供,并且需要在抽血后和运输过程中进行特殊处理。此外,在幼儿中,血浆或尿草酸盐值的解释可能具有挑战性,并且对肾衰竭后就诊的PH患者的评估需要获得可靠的血浆草酸盐测定。虽然LMWP是DD的特征,但低分子量蛋白质的特定测量通常很复杂,因为它是许多中心的转诊测试。此外,中度 LMWP 通常存在于累及近端肾单位的 NC 的其他病因中,如果只有常规的尿总蛋白和白蛋白测量,则与 DD 的鉴别更具挑战性。因此,尽管最初怀疑PH和DD分别归因于尿排泄增加或LMWP,但我们的研究表明,这些标志物可能具有误导性,说明了基因检测的价值。

           明确诊断导致管理改变。例如,在确诊为PH、用siRNA抑制乙醇酸酯氧化酶基因进行确定性治疗的患者中,HAO1目前可用于PH1和siRNA抑制乳酸脱氢酶A基因LDHA,正在临床试验中用于治疗PH2和PH3。14,16对于CYP24A1缺乏症,早期限制膳食钙和维生素D可有效治疗高钙血症,90 正在研究可增强 24-羟化酶活性的药物。对于患有APRTd的患者,口服别嘌呤醇或非布索坦在减少结石和维持肾功能方面非常有效。SLC34A3有2种致病性改变的患者提供了另一个例子,即正确的遗传诊断如何改变管理,因为这种疾病的主要治疗方法是补磷,如果没有这种诊断,就不会考虑补磷。因此,明确的分子诊断允许特异性和有效的治疗干预。此外,随着罕见疾病分子治疗的快速发展,随着不断发展的疗法的出现,明确的诊断有助于临床试验和早期治疗的注册。

          与更广泛的WES相比,我们的tNGS基因组合方法允许在捕获和测序期间更好地汇集样品,从而降低成本。此外,更大的读取深度使CNV比通过WES更容易被检测到。我们注意到,使用WES的诊断方案通常将分析筛查限制在一组符合表型的已知基因(类似于tNGS),11尽管 WES 方法允许随后需要对整个外显子组进行随访分析。

使用全面的筛查方法来鉴定所有可能的致病变异,包括新的错义变化和非典型剪接事件,对于严格的遗传筛查是必要的。本研究的分析充分利用了正常和疾病人群数据库、变异和剪接评估工具以及CNV分析。最终根据ACMG指南对结果进行评分,以确定检测到的变异的意义(有关详细信息,请参见补充方法)。家族分析(可能在少数情况下)和单个NGS读数的分析,当变异体靠近在一起时,有助于确定变异的相位(图2a,b),这是确定复合杂合子病例致病性的关键。我们的研究还说明了将临床数据与遗传信息相结合的优势,因为这增强了确定变异的可能致病意义以及它们是否符合表型的能力 - 在商业临床试验环境中并不总是可能的分析。此外,该分析允许考虑所有罕见的变异,包括一些可能改变表型的变异。然而,由于这些变异的意义在很大程度上是未知的(VUS),我们将它们分开分组(表34)。然而,其中一些变异是大型队列中后续研究的有力候选者,包括它们作为疾病调节剂的潜在作用。

         这项研究与早期报告单基因USD/NC筛查结果的研究不同,因为正常人群数据池更大(gnomAD91)和疾病环境中基因变异的信息收集(ClinVar),增强了确定变异的致病意义的能力。SLC34A1:p.Ala133Val以前被描述为单过敏性致病性,一些体外数据支持这种致病作用。58,73,88然而,该变异在正常人群中的频率(表4)和其他重要变异的发现使我们怀疑其致病作用,尽管它可能是疾病修饰因子(DDN51,PHN133)。在SLC34A1的情况下:p.Val91_Ala97del,文献中的一些功能数据及其与纯合性NC的相关性表明具有致病作用。82,92然而,尽管正常人群中的频率非常高(1.7%),但我们仅在杂合子状态下发现该变异,并且没有明显相关的表型(表3,4)。

         对SLC34A3SLC34A1受试者的分析说明了单基因疾病的复杂性。对于SLC34A3,在双性肝炎和单allelic病例中发现了相似的致病变异(表1),56,57,58,并且似乎存在表型重叠。从现有的临床信息来看,单色性SLC34A3病例的表型与这种遗传变化是一个促成因素是一致的;我们还注意到,单allelic p.Ser192Leu表型特别多变,60有些案例还有其他感兴趣的 VUS(表 1)。然而,由于最初的靶向遗传筛查和当前的tNGS组合分析之间失去了随访,我们无法获得肾脏磷酸盐处理缺陷的明确证据,例如血清磷低或这些个体中磷的分数排泄增加。因此,其他遗传变化可能有助于表型。

         11例CYP24A1单色病例中只有1例具有特征性CYP24A1缺乏症表型,因此10例被归类为具有感兴趣变异的受试者(表 4)。61有趣的是,4例单动脉病例在同一基因中具有额外的新型非典型剪接或错义变化;然而,由于缺乏显示断裂拼接,变体相位和/或替代重要性的数据,导致它们在每种情况下都被归类为VUS。一个例子是CYP24A1变体,p.Arg157Gln,73即使先前的体外分析显示表达降低,也很难评估。73同一地点的不同替代品,p.Arg157Trp,41是一种公认的致病变异,具有这2种反式变异的受试者具有典型的24-羟化酶缺乏表型(DDN51),而p.Arg157Gln(PHN144)纯合子患者则没有(表1,4)。有趣的是,DDN51也有SLC34A1:p.Ala133Val变体。我们将DDN51归类为单色性患者,但认为p.Arg157Gln可能具有修饰作用。73

虽然 USD 在儿童中不如成人常见,但儿童年龄组 USD 和 NC 的诊断一直在上升。93,94这些儿科病例在单基因病因方面高度丰富,88我们的大多数(76.1%)基因解决病例在18岁之前首次被诊断为USD / NC,这一比例高于总队列,强调儿科病例中单基因疾病的富集。88然而,更令人惊讶的是,我们没有看到儿童/青少年在双性肝炎(78%)与单alleleic受试者(78%)中的表现不同,因为较轻的病程通常是单一allelic病的特征。57 在双性队列中,27个(70.4%)中有19个是纯合子,这表明血缘关系对某些疾病富集的重要性。Claudin相关疾病就是一个很好的例子,大多数病例都有独特或非常罕见的变异。然而,对于某些基因,例如CYP24A1,由于某些等位基因的高种群水平,近交系中的纯合性并不罕见。对于其他基因等位基因,如SLC34A1:p.Tyr489Cys,一种更罕见的变异可以在特定种群中富集,在这种情况下是冰岛语。8对血缘关系有限的成年人群的分析预计将产生更少的单基因病例。93,94

尽管在新解决的病例中,原因的产生和广度都很有趣,但在进一步的tNGS分析之后,整个队列中的大多数仍未得到解决。许多个体可能没有简单的单基因疾病,因为与典型的USD有显着的表型重叠,其中遗传危险因素很重要,但不是单独致病的。然而,对新检测到的 VUS 的随访研究(例如,进一步的家族分析)可能会解决其他病例,如果存在更大的谱系,则还可以进行更广泛的遗传筛查,例如 WES 或全基因组测序 (WGS)。正如我们所做的那样,排除已知的USD/NC基因也是确定USD/NC的新型单基因病因的关键步骤,多重家族对于这些下一步研究特别有帮助。

          我们的研究有一定的局限性。该研究本质上是回顾性的,对于一些人来说,我们在基因检测时缺乏详细的临床信息,通常是由于当地无法获得特定的生化测试。因此,PH 或 DD 的证据有时是有限的,并且在少数与最初怀疑的诊断不一致的回顾性复查中。然而,这反映了临床实践中的情况,因为详细的生化数据可能并不总是可用的,特别是当患者出现肾衰竭时。此外,这个队列是在相对较长的时间内收集的,最近的数据经常丢失。这项研究的招募集中在患者身上,因此只有少数人有来自家庭成员的样本和临床信息,限制了隔离分析。根据设计,使用候选基因面板而不是WES或WGS限制了新基因的发现,尽管面板中包含了几个候选基因,并且自执行这项研究以来,已经确定了其他未包含在我们组中的USD基因。由于招募队列的人群,单基因USD/NC的整个范围并不均匀,例如,草酸盐(来自PH疑似队列)或LMWP(来自DD组)的尿排泄量高于USD/NC病例中的典型总体情况。最后,在某些情况下,错义变异对蛋白质功能的影响尚不确定,即使这些研究也需要严格评估,对这些变异的体外评估也是有价值的。

总之,我们对最初怀疑患有PH或DD的患者队列的基因再筛选解决了另外13.1%的这些病例,并且涉及14个基因中的多种单allelic和biallelic变异。鉴于 USD 和 NC 的单基因病因的表型重叠,tNGS 方法是解决疑似单基因疾病的队列的一种经济高效方法。

Table 1. Clinical and genetic details of likely resolved families

GenePedigree IDAllele 1aAllele 2aEthnicityb (sex)Age at first stoneNo. stonescStone compdESKD (E) or eGFR, ageeNCfU/CaghU/OxU/pHiU/CitjCommentsk
Biallelic













AGXTPHN244c.(1_358del) (p.Met1fs)c.(1_358del) (p.Met1fs)White (F)3 yr3CaOx110, 10 yrN571147.0529Parents confirmed heterozygous carriers
APRTPHN201c.3G>C (p.Met1?)c.3G>C (p.Met1?)So Asian (F)NAMultNAE, 45 yrY, 45yAnuricAnuricAnuricAnuric

PHN2-1c.81-3C>G (p.Asp28?)c.81-3C>G (p.Asp28?)White (M)NA2NAE, 51 yrY, 51yAnuricAnuric6.5AnuricVery low APRT, blood spot assay

PHN2-2c.81-3C>G (p.Asp28?)c.81-3C>G (p.Asp28?)White (M)-0-E, 50 yrNAnuricAnuricAnuricAnuricCrystals on biopsy
ATP6V1B1DDN55c.1037C>G (p.Pro346Arg)c.1037C>G (p.Pro346Arg)Mid East (F)2 moMultCaOx, AP35, 9 moY, 6m10812867.5 - 8NASensorineural deafness, 7 mo
CLDN16PHN193c.293G>A (p.Cys98Tyr)c.293G>A (p.Cys98Tyr)So Asian (M)-0-E, 34 yrY, 34yNA12.5NANA

PHN87c.338G>T (p.Cys113Phe)c.338G>T (p.Cys113Phe)So Asian (M)6 moMultCaOxE, 17 yrY, 17y190 mg/g128NANAHypocalcemic tetany, seizures, deafness

PHN208c.359G>A (p.Cys120Tyr)c.359G>A (p.Cys120Tyr)Hispanic (M)-0-NAY, 6y5.574.3NA315Parapelvic renal cysts

PHN13c.427+5G>A (p.Leu143?)c.427+5G>A (p.Leu143?)SE Asian (M)13 yrMultNAE, 21 yrN234 mg/24 h37 mg/24 hrNANA

PHN38c.445C>T (p.Arg149*)c.445C>T (p.Arg149*)Mid East (M)NANANANANANA57NANA

PHN223c.445C>T (p.Arg149*)c.445C>T (p.Arg149*)Mid East (F)16 yrNANANAY, 16yNANANANA

PHN226c.571G>A (p.Gly191Arg)c.571G>A (p.Gly191Arg)Mid East (F)1.5 yrNANANAY, 4yNANANANA

DDN28c.646C>T (p.Arg216Cys)c.646C>T (p.Arg216Cys)So Asian (M)NANANAE, 2 yrY, 2y486 mg/24 h1266NASLC4A1: p.Glu906Gln
CLDN19DDN60c.392T>G (p.Leu131Arg)c.392T>G (p.Leu131Arg)AA (M)-0-83, 11 yrY, 11yNANA7NARickets, eye glasses, 11 yr

PHN112c.535G>A (p.Gly179Ser)c.535G>A (p.Gly179Ser)So Asian (M)2 yrMultCaOxE, 16 yrY, 16yNA3.1 mg/24 hNANAHigh myopia
CYP24A1PHN10c.364G>T (p.Glu122*)c.1226T>C (p.Leu409Ser)White (M)-0-91, 4 yrY, 1y4.8897189

PHN42c.428_430del (p.Glu143del)c.1186C>T (p.Arg396Trp)White (M)17 yrNANA80, 17 yrY, 16y288837416Proven biallelic, BRC

PHN28c.1226T>C (p.Leu409Ser)c.1226T>C (p.Leu409Ser)White (M)36 yr1CaOxE, 43 yrY, 36y36940.55.7329
GRHPRPH2-6c.864_865delTG (p.Val289fs20*)c.214_493del (p.Gly72fs)Chinese (F)17 yr3CaOxE, 28 yrNAAnuricAnuricAnuricAnuric
KCNJ1PHN213c.562C>A (p.Arg188Ser)c.562C>A (p.Arg188Ser)White (F)NANANA173, 11 yrY, 11y445 mg/g37 mg/g7.1898BSND: p.Gly304Arg

DDN36c.1058dupC (p.His354Serfs)c.788T>G (p.Ile263Ser)White (M)57 yrNACaOx32, 59 yrY, 58y178406.2261
SLC12A1DDN13c.769G>A (p.Gly257Ser)c.1424G>A (p.Cys475Tyr)White (M)3 yrNANA83, 3 yrY, 3y6.578mg/g7212mg/g
SLC34A1PHN233c.1466A>G (p.Tyr489Cys)c.1466A>G (p.Tyr489Cys)Icelandic (F)NANANA110, 7 yrY, 4y605 mg/g356 mg/gNA202MSK
SLC34A3DDN6c.413C>T (p.Ser138Phe)#c.448+1G>A (p.Lys149?)White (F)17 yrMultCOD/COM38, 19 yrY, 17y233556.4127


c.1576_1578del (p.Leu527del)#












DDN39c.560+23_561-42del (p.Arg187?)c.1058G>T (p.Arg353Leu)White (F)16 yr1NA61, 18 yrY, 16y342 mgNANANA

DDN33c.1247delT (p.Leu416Profs)c.1247delT (p.Leu416Profs)SE Asian (M)8 yrMultCaOx103, 11 yrY, 8y15.4515.5-7257-608

DDN41c.1453C>T (p.Arg485Cys)c.1454G>A (p.Arg485His)#White (M)16 yr∼50COD/COM101, 37 yrN376NANANA



c.1585A>T (p.Ile529Phe)#










SLC4A1DDN57c.2573C>T (p.Ala858Asp)c.2573C>T (p.Ala858Asp)Mid East (M)NAMultAP92.5, 7 yrY, 7y153 mg/gNA8.5452
Monoallelic












CASRPHN31c.649G>T (p.Asp217Ty)NDAfrican (M)-0-142, 3 yrY, 1y121127.2958HS, <1y, congenital HPT; SLC12A1, p.Gly397Asp
CYP24A1DDN51c.469C>T (p.Arg157Trp)NDWhite (F)19 yr1NA>90, 27 yrY, 19y339286.9495BRC,
SLC34A1: p.Ala133Val, CYP24A1: p.Arg157Gln
HNF4ADDN12c.253C>T (p.Arg85Trp)NDWhite (M)NANANA75, 10 yrY, 16y8.259.17.01893Fanconi, rickets, glucosuria, UP 30,

DDN7c.253C>T (p.Arg85Trp)NDWhite (M)NANANA75, 6 yrY, 11y8.260.46.61168Fanconi, severe bone disease, UP 100
SLC34A1DDN61c.241dupG (p.Glu81Glyfs)NDWhite (F)-0-98, 3 yrY, 15mNANANANASLC34A1: c.1175-3C>A

DDN26c.460_480dup (p.Ile154_Val160dup)NDBrazil (F)7 yr4NA125, 15 yrY, 7y4.2NANANAUTI, 7y, RBP slightly high, SLC34A3: c.561-8G>A SLC26A1: c.577-1G>A
SLC34A3PHN245c.(1-?)_(1797+)del (p.Met1fs)NDWhite (M)NANANANAY, 6y3.7100832SLC34A3: c.305-7G>A

PHN32c.575C>T (p.Ser192Leu)NDWhite (F)-0-NAY, 10y4.61007.0558

PHN180c.575C>T (p.Ser192Leu)NDWhite (M)48 y3NA31, 56 yrN118516.1299

PHN239c.575C>T (p.Ser192Leu)NDWhite (M)35 yMultNA42, 62 yrNA841355.4392SLC34A3: p.Pro571Ser SLC3A1: c.1136+2T>C

PHN250c.575C>T (p.Ser192Leu)NDNA (M)7 mo3CaOxNANANANANANA

PHN219c.846G>A (p.Pro282?)NDWhite (M)4 yr2NANANA5.279.57.0527

PHN274c.1454G>A (p.Arg485His)
c.1585A>T (p.Ile529Phe)
##
NDWhite (F)<18 yrMult.CaOx-Y, 36y343120>8534MSK

PHN156c.1246_1247del (p.Leu417Thrfs)NDWhite (M)12 yr1CaOx90, 12 yrY, 12y9.2687.0488Autism

PHN53c.1623G>A (p.Trp541*)NDWhite (F)-0-117, 30 moY, 1y8.9747.0523Failure to thrive, 9 mo;
CYP24A1, p.Glu143del
SLC4A1PHN152c.1765C>T (p.Arg589Cys)NDWhite (M)-0-150, 6 yrY, 6y4.31007.0<73Urinary incontinence

DDN8c.2726T>C (p.Met909Thr)NDWhite (M)-0-81, 6 yrY, 5y3.148.97.4<48Hematuria, prenatal hydronephrosis
Chr4q delPHN20chr4 (85,553,401-104,356,614) 18.8MBNDWhite (M)6 moMultNA139, 6 moN466399 mg/g6NAFailure to thrive

Biochemical values outside the normal range are shown in boldface type. NA, information not available.

  • a

  • Allele: # = variants suspected of being on the same allele; ND, not detected.

  • b

  • Ethnicity (sex): Mid, middle; So, south; SE, south east; AA, African American; (F), female; (M), male; NA, information not available.

  • c

  • No. stones, total number of stones observed; Multi, multiple.

  • d

  • Stone comp, stone composition; CaOx, calcium oxalate; AP, apatite; COD/COM, calcium oxalate dihydrate/calcium oxalate monohydrate.

  • e

  • ESKD, eGFR, age: E, end-stage kidney disease with age indicated; yr, year; mo, month; estimated glomerular filtration rate (eGFR), value and age indicated; eGFR calculated with Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation (ml/min per 1.73 m2) or Full Age Spectrum (FAS) pediatric equation for patients <1 yr.

  • f

  • NC, nephrocalcinosis; Y, yes and age first detected; y, year; m, month; N, no.

  • g

  • U/Ca , urine calcium, shown as mg/24 h when ≥18 yr or as mg/kg per 24 h when <18 yr (underlined), unless otherwise shown.

  • h

  • U/Ox, urine oxalate, shown as mg/24 h when ≥18 yr or as mg/1.73 m2 when <18 yr (underlined), unless otherwise shown.

  • i

  • U/pH, urine pH

  • j

  • U/Cit, urine citrate shown in mg/24 h when >18 yr or as mg/g creatinine when <18 yr (underlined). Creatinine normalization (mg/g creatinine).

  • k

  • Comments: BRC, bilateral renal cysts; RBP, retinol binding protein; HPT, hyperparathyroidism; HS, hypocalcemic seizures; MSK, medullary sponge kidney; UTI, urinary tract infection; UP, urinary protein. Variants that may be significant to the phenotype are shown in boldface type.

Table 2. Details of the described pathogenic variants

GeneaDiseasebFamily IDZygositycVariant descriptionVariant typedPubeGnomAD frequencyfSplicing evaluationgMissense evaluationhACMG evaluationi
HSFBDGPPredOrthoDomClassEvidence
AGXTPH1PHN244Homc.1_358del (p.Met1fs)L DelN0NANANANANAPath IbPVS1, PM2, PM3, PP4
APRTAPRTdPHN201Homc.3G>C (p.0?)NonStartN2/146792NANA


Path IbPVS1, PM2, PM3


PHN2Homc.81-3C>G (p.Asp28fs)SpliceN3/19720487.65 to 77.360.23 to <0.1NANANALP IVPM2, PM3, PP1-M, PP3, PP4
ATP6V1B1dRTADDN55Homc.1037C>G (p.Pro346Arg)Mis364/250624NANA6/67/7NAPath IIPS1, PS3, PM2, PM3, PP4, PS4
CASRHHC1PHN31Hetˆc.649G>T (p.Asp217Tyr)MisClinVar (x2 LP)0NANA6/66/7NALP VIPM2, PP2, PP3, PP4, PP5
CLDN16FHHNCPHN193Homc.293G>A (p.Cys98Tyr)MisN0NANA5/68/8NALP VPM2, PM3, PP2, PP3, PP4


PHN87Homc.338G>T (p.Cys113Phe)MisN0NANA4/66/6NALP VPM2, PM3, PP2, PP3, PP4


PHN208Homc.359G>A (p.Cys120Tyr)MisN8/251470NANA6/66/67/7LPPM1, PM3, PP2, PP3, PP4


PHN13Homc.427+5G>A (p.Leu143?)Splice374/25136676.03 to 49.490.88 to 0.05NANANAPath IIIbPS1, PM2, PM3, PP3, PP4


PHN38,
PHN223
Homc.445C>T (p.Arg149∗)Nons381/251490NANANANANAPath IaPVS1, PS1, PM2, PM3, PP4


PHN226Homc.571G>A (p.Gly191Arg)Mis38NANA0.92 to 0.926/68/8NAPath IIPS1, PS4, PM3, PP2, PP3, PP4


DDN28Homc.646C>T (p.Arg216Cys)Mis393/282812NANA6/68/8NAPath IIIbPS1, PM2, PM3, PP2, PP3, PP4
CLDN19FHHNCDDN60Homc.392T>G (p.Leu131Arg)MisN0NANA6/66/76/7LP IVPM1, PM2, PM3, PP2, PP3, PP4


PHN112Homc.535G>A (p.Gly179Ser)Mis133/206108NANA6/67/77/7Path IIIaPS1, PM1, PM2, PM3, PP3, PP4
CYP24A1HCINF1PHN10C Hetc.364G>T (p.Glu122∗)NonsN1/250584NANANANANAPath IcPVS1, PM2, PP4


PHN42, PHN53, PHN200C Het, Hetˆ, Hetc.428_430del (p.Glu143del)I/F Del40146/282660 (1 hom)NANANA7/71/7Path IIRPS1, PS3, PM4, PP4


DDN51Hetc.469C>T (p.Arg157Trp)Mis41525/282662NANA3/67/71/7LP IIPS1, PM3, PP4


PHN42, PHN63, PHN234C Het,
2x Het
c.1186C>T (p.Arg396Trp)Mis40199/282630 (1 hom)NANA6/67/76/7Path IIRPS1, PS3, PP3, PP4


PHN10, PHN28, PHN68, PHN115C Het, Hom, 2x Hetc.1226T>C (p.Leu409Ser)Mis40209/282476NANA6/67/71/7Path IIRPS1, PS3, PM3, PP3, PP4
GRHPRPH2PH2-6C. Hetc.214_493del (p.Gly72fs)L DelN0NANANANANAPath IcPVS1, PM2, PP4


PH2-6C. Hetc.864_865delTG (p.Val289fs20∗)F/S Del4211/282828NANANANANAPath IaPVS1, PS1, PP4
HNF4AFRTS4DDN12, DDN72x Hetc.253C>T (p.Arg85Trp)Mis430NANA6/67/79/9Path IIPS1, PS4, PM1, PP4
KCNJ1BARTS2PHN213Homc.562C>A (p.Arg188Ser)MisN1/249916NANA6/66/69/10LP VPM2, PM3, PP3, PP4


DDN36C Hetc.788T>G (p.Ile263Ser)MisN0NANA6/66/66/10LP VPM1, PM2, PP2, PP3, PP4


DDN36C Hetc.1058dupC (p.His354Serfs)F/S Dup4414/282766NANANANANAPath IaPVS1, PS1, PP4
SLC12A1BARTS1DDN13C Hetc.769G>A (p.Gly257Ser)Mis451/31402NANA5/66/67/7LP IIPS1, PM2, PP3, PP4


DDN13C Hetc.1424G>A (p.Cys475Tyr)Mis130NANA5/66/6NALP IIPS1, PM2, PP3, PP4
SLC34A1HCINF2DDN61Hetc.241dupG (p.Glu81Glyfs)F/S DupN1/248792NANANANANAPath IcPVS1, PM2, PP4


DDN26Hetc.460_480dup (p.Ile154_Val160dup)I/F Del465/251404NANANANANALP IIPS1, PM2, PM4


PHN233Homc.1466A>G (p.Tyr489Cys)Mis81/250692NANA6/67/75/8LP IIPS4, PM3, PP3, PP4
SLC34A3HHRHPHN245Hetc.(1-?)_(1797+) del(p.Met1fs)L delN0NANANANANAPath IbPVS1, PM2, PM3, PP4


DDN6C Het∗c.413C>T (p.Ser138Phe)Mis4730/273572NANA5/66/65/8LP IIPS1, PM3, PP3, PP4


DDN6C Het∗c.448+1G>A (p.Lys149?)Mis4841/26656272.6 to 45.40.1 to 0NANANAPath IaPVS1, PS1, PM3, PP4


DDN39C Hetc.560+23_561-42del (p.Arg187?)Splice4950/240582NANANANANALP IIIPS1, PP3, PP4


PHN32, PHN180, PHN239, PHN2504x Hetc.575C>T (p.Ser192Leu)Mis5099/214524NANA6/67/71/8Path IIPS1, PS3, PS4, PP4


PHN219Hetc.846G>A (p.Pro282?)Splice507/28034688.39 to 78.310.78 to 0.11NANANALP IIIPS1, PP3, PP4


DDN39C Hetc.1058G>T (p.Arg353Leu)Mis504/243200NANA4/66/6NALP IIPS1, PM2, PP4


PHN156Hetc.1246_1247del (p.Leu417Thrfs)F/S DelClinVar 1x LP14/248800NANANANANAPath IdPVS1, PP4, PP5


DDN33Homc.1247delT (p.Leu416Profs)F/S DelN1/248562NANANANANAPath 1bPVS1, PM2, PM3, PP4


DDN41C Het∗c.1453C>T (p.Arg485Cys)MisN151/277496NANA6/66/75/8LP VPM3, PM5, PP3, PP4


DDN41, PHN274C Het∗, Het∗c.1454G>A (p.Arg485His)Mis12769/277194 (3 hom)NANA6/66/75/8LP IIPS1, PM3, PP4


DDN6C Het∗c.1576_1578del (p.Leu527del)I/F Del4743/253996NANANA6/65/8Path 1bPS1, PM3, PM4, PP3, PP4


DDN41, PHN274C Het∗, Het∗c.1585A>T (p.Ile529Phe)Mis12668/243972 (2 hom)NANA1/64/7NALP IIPS1, PM3, PP4


PHN53Hetˆc.1623G>A (p.Trp541∗)NonsN1/158290NANANANANAPath IcPVS1, PM2, PP4
SLC4A1dRTAPHN152Hetc.1765C>T (p.Arg589Cys)Mis510NANA6/67/78/12LP IIPS1, PM1, PM2, PP4


DDN57Homc.2573C>T (p.Ala858Asp)Mis5218/250988NANA5/65/7NAPath IIPS1, PS3, PM3, PP4


DDN8Hetc.2726T>C (p.Met909Thr)Mis530NANA5/67/74/6Path IIPS1, PS3, PM2, PP4
Chr4q delNAPHN20Hetchr4 (85,553,401-104,356,614) 18.8MBL DelNNNANANANANALP IPSV1, PM2

NA, not applicable.

  • a

  • Gene: nucleotide and protein Accession Numbers are shown in Table S3.

  • b

  • Disease: Online Mendelian Inheritance in Man (OMIM) terms used. PH, primary hyperoxaluria; APRTd, adenine phosphoribosyltransferase deficiency; dRTA, distal renal tubular acidosis; HHC1, hypocalciuric hypercalcemia; familial, type I, FHHNC, familial hypomagnesemia with hypercalciuria and nephrocalcinosis; HCINF, infantile hypercalcemia; FRTS, Fanconi renotubular syndrome; BARTS, Bartter syndrome; HHRH, hereditary hypophosphatemic rickets with hypercalciuria.

  • c

  • Zygosity: Hom, homozygous; Het, heterozygous; C Het, compound heterozygous. ˆComplex genotype; ∗3 alleles detected.

  • d

  • Variant type: L del, large deletion; NonStart, start codon substitution; Mis, missense; Nons, nonsense; I/F Del, inframe deletion; F/S Del, frameshifting deletion; F/S Dup, frameshifting duplication.

  • e

  • Pub: prior description in a publication; N, novel variant, description in ClinVar if unpublished: LP, likely pathogenic.

  • f

  • GnomAD frequency: frequency in the gnomAD database of “normal individuals”; hom, homozygous descriptions.

  • g

  • Splicing evaluation: HSF, Human Splice Finder; BDGP, Berkley Drosophila Gene Project, for both normal and variant score shown, and where appropriate, N is the score of novel site generated, NA, not applicable.

  • h

  • Missense evaluation: Pred, fraction of predicted damaging pathogenicity scores from the following: SIFT, PolyPhen-2 HVAR, MutationTaster, Mutation Assessor, FATHMM, and FATHMM MKL. Ortho, fraction matching the human sequence in a multisequence alignment (MSA) of orthologs from mammals to fish. Dom, fraction matching the human sequence MSA of conserved domains, NCBI database, NA, not applicable.

  • i

  • ACMG evaluation: Class, pathogenic classification based on the American College of Medical Genetics (ACMG) guidelines for interpretation of sequence variants: Path, pathogenic; LP, likely pathogenic, with subclasses shown. Evidence, ACMG evidence supporting the interpretation of sequence variant classification. The evidence is classed as follows: PVS1, pathogenic very strong; PS, pathogenic strong; PM, pathogenic moderate; PP, pathogenic supportive (see Richards et al.19 for details).

Table 3. Details of other variants of interest

GeneaFamily IDbZygositycVariant descriptionVariant typedPubeGnomAD frequencyfSplicing evaluationgMissense evaluationhACMG evaluationi
HSFBDGPPredOrthoDomClassEvidence
ALPLPHN280Hetc.1001G>A (p.Gly334Asp)Mis610NANA6/68/86/12LP IIRPS1, PS3, PM2
ALPLPHN23Hetc.1069C>T (p.Arg357Trp)MisN5/251484NANA4/64/82/8VUSPM2
APRTDDN5Hetˆc.541T>C (p.∗181Argext?∗)NonStop621/250662NANANANANALP IIRPS1, PM2, PM4
ATP6V0A4DDN64Hetc.334C>G (p.Gln112Glu)MisN10/251446NANA3/66/7NAVUSPP4
ATP6V1B1PHN54Hetˆc.181C>T (p.Gln61∗)NonsClinVar 1xP, 1xVUS2/250526NANANANANALP IIRPVS1, PM2

PHN99Hetˆc.1155dupC (p.Ile386Hisfs)F/S Dup361/31018NANANANANAPath IaRPVS1, PS1, PM2
BSNDPHN255Hetc.673C>T (p.Gln225∗)NonsN11/282828NANANANANAVUSPVS1

DDN48Hetˆc.770A>G (p.Gln257Arg)MisClinVar 1xVUS31/282584NANA1/65/7NAVUS

PHN90Hetc.859G>T (p.Glu287∗)NonsClinVar 2xVUS1/251428NANANANANAVUSPM2, PM4

PHN213Hetˆc.910G>A (p.Gly304Arg)MisN5/251146NANA5/66/8NAVUSPM2
CLCNKBPHN212Hetc.782-2A>G (p.Glu261?)Splice633/26323886.3 to 58.40.8 to <0.1NANANAPath IaRPVS1, PS1, PM2, PP3
CYP24A1PHN144, DN51, PHN237Hom, C Het, Hetˆc.470G>A (p.Arg157Gln)Mis64831/282662 (1 hom)NANA3/67/71/7VUSPS3, PM3, PM5, PP4, BS2

PHN80Hetˆc.964G>A (p.Glu322Lys)Mis4011/282854NANA5/67/73/7Path IIRPS1, PS3, PP3

DDN48Hetˆc.1339dupA (p.Ile447Asnfs)F/S DupN3/251438NANANANANAPath IRPVS1, PM2

PHN120Hetc.1385G>A (p.Cys462Tyr)MisN13/282854 (1 hom)NANA6/66/77/7VUSPP2, PP3
CYP27B1PHN157Hetˆc.1378delC (p.Leu460Trpfs)F/S DelNNNANANANANALP IRPVS1, PM2
HNF4APHN71Hetc.427A>G (p.Ser143Gly)MisClinVar 3x VUS14/251066N 1.99 to 6.23N 0.06 to 0.734/67/7NAVUSPP3

PHN157Hetˆc.724G>A (p.Val242Met)Mis652/249892NANA4/66/72/9VUSPS1
KCNJ1DDN46Hetc.932G>A (p.Arg311Gln)Mis663/282548NANA6/67/710/10LP IIRPS1, PM2, PP3
SLC12A1PHN31Hetˆc.1190G>A (p.Gly397Asp)MisN0NANA6/66/67/7VUSPM2, PM5, PP3
SLC12A3PHN133Hetˆc.363G>C (p.Glu121Asp)Mis67257/281630 (1 hom)NANA2/65/74/7Path IIRPS1, PS3,

PHN249Hetc.1963C>T (Arg665Cys)Mis687/250982NANA6/67/77/8LP IIRPS1, PM2, PM3, PP3
SLC22A12DDN50, PHN77Hetc.1301G>A (p.Arg434His)Mis69512/266952 (1 hom)NANA5/64/6NAVUSPS1, PS3, BS1
SLC26A1PHN228Hetc.528C>A (p.Tyr176∗)NonsN53/256644NANANANANAVUSPVS1

DDN26Hetˆc.577-1G>A (p.Val193?)SpliceN2/21033886.1 to 58.20.88 to <0.1NANANALP IIRPVS1, PM2
SLC4A1PHN280Hetˆc.706T>G (p.Phe236Val)MisN30/279230NANA5/68/811/12VUSPP3
SLC3A1PHN99, PHN136Hetˆ, Hetc.1400T>C (p.Met467Thr)Mis70682/282552 (4 hom)NANA5/67/76/11Path IRPS1, PS3, PS4

PHN237Hetˆc.161delC (p.Gln55Argfs)F/S Del7117/282536NANANANANAPath IaRPVS1, PS1

PHN239Hetˆc.1136+2T>C (p.Arg379?)Splice7224/282546

NANANAPath IaRPVS1, PS1
SLC34A1PHN88Hetc.115C>T (p.His39Tyr)MisN1/248542NANA4/66/7NAVUSPM2

DDN21, PHN179, PHN222Hetc.272_292del (p.Val91_Ala97del)I/F Del734774/282536 (41 hom)NANANANANAVUSRPS3, BS1

PHN133, DDN51Hetˆc.398C>T (p.Ala133Val)Mis731022/282816 (3 hom)NANA6/67/74/8VUSPS1, BS1

PHN29Homc.937-8T>A (p.Ala313_insIle∗)SpliceN41/28278860.22 to -6 site 89.170.67 to -6 site 0.81NANANAVUSPM3, PP3, PP4

PHN150Hetc.1174+1G>A (p.Asp392?)SpliceN091.81 to 64.980.92 to <0.01NANANALP IRPVS1, PM2

DDN61C Hetc.1175-3C>T (p.Asp392?)SpliceN091.59 to 82.20.55 to 0.08NANANAVUSPM2, PP3, PP4

PHN45Hetc.1469C>T (p.Pro490Leu)MisClinVar 1xVUS, 1xLB5/250774NANA5/67/75/8VUSPM2
SLC34A3PHN165, PHN245C Het, Hetc.305-7G>A (p.Ser105?)SpliceClinVar 1x LB43/28151859.5 to N 88.450.28 to <0.1, N 0.35NANANAVUSPM3, PP3, PP4

PHN258Hetc.362G>A (p.Gly121Glu)MisN1/249512NANA6/67/74/8VUSPM2

DDN26Hetˆc.561-8G>A (p.Glu186_Arg187
insSerHis)
SpliceClinVar 1x VUS6/1842727.69 to 1.3,
N 9.37
0.76 to <0.1,
N 0.74
NANANAVUSPM4, PP3

PHN209Hetc.756G>A (p.Gln252?)Splice74562/247480 (2 hom)96.91 to 86.330.98 to 0.23NANANAVUSPS1, PP3

PHN54Hetˆc.1208T>G (p.Met403Arg)MisN17/271426NANA5/64/72/8VUSPP3

PHN239C Hetc.1711C>T (p.Pro571Ser)MisN1/148960NANA2/67/7NAVUSPM2, PP2, PP3, PP4
SLC4A1PHN80Hetˆc.539G>A (p.Arg180His)Mis75939/282824 (2 hom)NANANA5/8NAVUSPS1, BS1

DDN28Hetˆc.2716G>C (p.Glu906Gln)Mis12322/282576NANA4/68/8NAVUSPS1, BP5
SLC7A9PHN95Hetc.313G>A (p.Gly105Arg)Mis7675/282378NANA6/66/76/6Path IIRPS1, PS3, PS4, PM3, PP4

PHN175Hetc.544G>A (p.Ala182Thr)Mis76727/282810 (2 hom)NANA3/66/75/7LP IIRPS1, PS3
SLC9A3R1PHN56Hetc.902A>T (p.Asp301Val)Mis77277/282774NANA4/65/78/10VUSPS1
WNK4PHN243Hetc.2080C>T (p.Gln694∗)NonsN6/282870NANANANANAVUSPM4, BP1∗
Chr8dupDDN5HetˆCh8 (86,080,415-87,439,522) 1.4MBL DupNNNANANANANAVUSPM2
Chr4dupDDN5HetˆCh4 (79,698,698-80,259,893) 560kbL DupNNNANANANANAVUSPM2

NA, not applicable.

  • a

  • Gene: nucleotide and protein accession numbers are shown in Table S3.

  • b

  • Family ID: boldface type indicates possibly significant in the family; italicized type indicates variant in heterozygosity previously considered significant.

  • c

  • Zygosity: Hom, homozygous; Het, heterozygous; C Het, compound heterozygous; ˆcomplex genotype.

  • d

  • Variant type: Mis, missense; NonStop, stop codon substitution; Nons, nonsense; F/S Dup, frameshifting duplication; F/S Del, frameshifting deletion; L Dup, large duplication; I/F Gel, inframe deletion.

  • e

  • Pub: prior description in publication; N, novel variant; description in ClinVar if unpublished: P, pathogenic; VUS, variant of uncertain significance; LB, likely benign.

  • f

  • GnomAD frequency: frequency in the gnomAD database of “normal individuals”, hom, homozygous descriptions.

  • g

  • Splicing evaluation: HSF, Human Splice Finder; BDGP, Berkley Drosophila Gene Project, for both normal and variant score shown, and where appropriate N is score of novel site generated.

  • h

  • Missense evaluation: Pred, fraction of predicted damaging pathogenicity scores from: SIFT, PolyPhen-2 HVAR, MutationTaster, Mutation Assessor, FATHMM, and FATHMM MKL; Ortho, fraction matching the human sequence in a multisequence alignment (MSA) of orthologs from mammals to fish; Dom, fraction matching the human sequence MSA of conserved domains, NCBI database.

  • i

  • ACMG evaluation: class, pathogenic classification based on the American College of Medical Genetics guidelines for interpretation of sequence variants: Path, pathogenic; LP, likely pathogenic; VUS, variant of uncertain significance, with subclasses shown; R, evaluation in recessive setting if found with another LP/P allele; Evidence, ACMG evidence supporting the interpretation of sequence variant classification. The evidence is classed as: PVS1, pathogenic very strong; PS, pathogenic strong; PM, pathogenic moderate; PP, pathogenic supportive (see Richards et al.19 for details).

Table 4. PH-negative (PHN) and DD-negative (DDN) families with variants of interest

GenePedigree IDVariantEthnicity (sex)aAge at first stoneNo. stonesbStone compcESKD (E) or eGFR, agedNCeU/CafU/OxgU/pHhU/CitiCommentsj
Single variants











ALPLPHN23c.1069C>T (p.Arg357Trp)NA (M)40 yrMultiCaOx78, 48yN458587.0NA
ATP6V0A4DDN64c.334C>G (p.Gln112Glu)White (M)-0-69, 9yY, 5y56457.8<64
BSNDPHN255c.673C>T (p.Gln225∗)White (F)56 yr1NA34, 57yNA451635.5<35DM2

PHN90c.859G>T (p.Glu287∗)NA (F)NANANAE, 66yNANANANANAAcute tubular necrosis, oxalate nephropathy
CLCNKBPHN212c.782-2A>G (p.Glu261?)NA (M)69 yr1CaOx20, 73yNA5933 - 2105.1121
CYP24A1PHN200c.428_430delAAG (p.Glu143del)White (M)2 yr1NANAN3.7777.4741Hematuria 18 mo

PHN63c.1186C>T (p.Arg396Trp)White (M)4 yr190% CaOx, 10% CaP113, 4yN3.7997.3596

PHN234c.1186C>T (p.Arg396Trp)White (F)NANACOMNANA71866.3136

PHN68c.1226T>C (p.Leu409Ser)White (F)5 yr1NA149, 5yN2.8737.41072Hematuria

PHN115c.1226T>C (p.Leu409Ser)White (F)4 mo6NA146, 4mN13187.353Premature

PHN120c.1385G>A (p.Cys462Tyr)So Asia (?)NAMultiNANANNANANANAGross hematuria, 6 mo
HNF4APHN71c.427A>G (p.Ser143Gly)White (F)NA∼100NA23, 63yY, 61y41845.9357
KCNJ1DDN46c.932G>A (p.Arg311Gln)NA (M)NANANA55, 33yY, 29y445697.5302DI, hyperparathyroidism
SLC12A3PHN249c.1963C>T (Arg665Cys)White (F)NANANANAY, 1y0.91447.11104
SLC22A12DDN50c.1301G>A (p.Arg434His)Mid East (M)9 yr2NA97, 9yN30 mg/gNA7NAVATER syndrome

PHN77c.1301G>A (p.Arg434His)White (M)-0-134, 7yN2.7676.9653Gross hematuria
SLC26A1PHN228c.528C>A (p.Tyr176∗)Chinese (M)30 yrMultiNAE, 56yNANANANANA
SLC3A1PHN136c.1400T>C (p.Met467Thr)White (M)-0-E, 60yNNANANANAKidney biopsy, oxalate crystals
SLC34A1PHN88c.115C>T (p.His39Tyr)So Asia (M)2 yr10CaOx46, 11yY<12.7 mg/g61NA15.6 mg/ 1.73m2/24hrSmall kidneys, LVD

PHN150c.1174+1G>A (p.Asp392?)White (M)3 yrNACaOx/UA26, 65yN130446.0373DM2, atrophic LK

PHN45c.1469C>T (p.Pro490Leu)NA (M)3 moMultNANANNA164 mg/g crNANATwin with stones did not have variant

DN-21c.272_292del (p.Val91_Ala97del)NA (F)54 yrMultCOM25, 58yN561116.0NAOx crystals, Sjogren’s syndrome

PHN222c.272_292del (p.Val91_Ala97del)White (M)50 yrMultCaOx58, 66yN162737.01108

PHN179c.272_292del (p.Val91_Ala97del)White (F)10 yr>10050%COM 50%UADNAN2.342.55.9404
SLC34A3PHN165c.305-7G>A (p.Ser105?)White (F)8 mo1NA95, 8 moN2.81497.51363

PHN258c.362G>A (p.Gly121Glu)NA (F)2 yo6NANAY, 2y53 mg/g cr4 mg/g cr6.590Dysmorphic features, BRS, kidney cysts

PHN209c.756G>A (p.Gln252?)White (F)14 yr3APNAN111757.6135Developmental delay, Lennox-Gastaut syndrome
SLC7A9PHN95c.313G>A (p.Gly105Arg)White (F)1 mo2NA91, 9 moY, 1mNA142 mg/g crNANAVSD, choreoathetosis

PHN175c.544G>A (p.Ala182Thr)NA (M)51 yrMultiCaOx72, 62 yrN120685.3646Cystine -ve
SLC9A3R1PHN56c.902A>T (p.Asp301Val)NA (M)13 yrMultNANAN0.7353 mg/g cr5.6251.7
WNK4PHN243c.2080C>T (p.Gln694∗)Hisp (M)7 yr3NA124, 7 yrNA7.851.86.4433
Pedigree IDGeneVariantEthnicity (sex)Age at first stoneNo. stonesStone compESKD (E) or eGFR, ageeNCU/CaU/OxU/pHU/CitComments
Multiple variants











PHN280ALPLc.1001G>A (p.Gly334Asp)White (M?)4 yrNANA-Y, 4.5 yr4.4103.17.31483

SLC4A1c.706T>G (p.Phe236Val)
PHN99ATP6V1B1c.1155dupC (p.Ile386Hisfs)White (M)52 yr7NA72, 62 yrNA962317.3758Cystine -ve

SLC3A1c.1400T>C (p.Met467Thr)
PHN54ATP6V1B1c.181C>T (p.Gln61∗)NA (M)12 yr1COM122, 12 yrN3.61046.5651

SLC34A3c.1208T>G (p.Met403Arg)
PHN144CYP24A1(Hom) c.470G>A (p.Arg157Gln)White (F)12 yr>100CaOxE, 56 yrY, 12 yrNANANANAMSK
PHN237CYP24A1c.470G>A (p.Arg157Gln)White (M)20>300COM66, 62 yrNA258845.62319

SLC3A1c.161delC (p.Gln55Argfs)
PHN80CYP24A1c.964G>A (p.Glu322Lys)White (F)4 yr5NA171, 6 yrN6.41017.01165

SLC4A1c.539G>A (p.Arg180His)
DDN48CYP24A1c.1339dupA (p.Ile447Asnfs)Hisp (M)-NA-55, 16 yrY, 6 yr40 mg/g607.0NAPyelonephritis

BSNDc.770A>G (p.Gln257Arg)
PHN157HNF4Ac.724G>A (p.Val242Met)NA (M)65 yr1COM79, 65 yrN237815.8385

CYP27B1c.1378delC (p.Leu460Trpfs)
PHN133SLC12A3c.363G>C (p.Glu121Asp)White (M)NAMultiCOM77, 56 yrN320466.8770

SLC34A1c.398C>T (p.Ala133Val)
PHN29SLC34A1(Homo) c.937-8T>A (p.Ala313_insIle∗)N Africa (M)-0-150, 3 moY, 3 moNA147 mg/gNANA
DDN5Chr8dupCh8 (86,080,415-87,439,522) 1.4MBWhite (M)-NA-192, 15 yrN2.8NA6NA

Chr4dupCh4 (79,698,698-80,259,893) 560kb

APRTc.541T>C (p.∗181Argext∗)

Biochemical values outside of the normal range are shown in boldface type.

DD, Dent disease; NA, information not available; PH, primary hyperoxaluria.

  • a

  • Ethnicity (sex): So, south; Hisp, Hispanic; N, north; Mid, middle; (F), female; (M), male.

  • b

  • No. stones, total number of stones observed; Multi, multiple.

  • c

  • Stone comp, stone composition; CaOx, calcium oxalate; CaP, calcium phosphate; AP, apatite; COM, calcium oxalate monohydrate; UA, uric acid; UAD, uric acid dihydrate.

  • d

  • ESKD, eGFR, age: E, end-stage kidney disease with age indicated, eGFR, value and age indicated; eGFR calculated with Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation (ml/min per 1.73 m2) or full age spectrum (FAS) pediatric equation for patients <1 yr.

  • e

  • NC, nephrocalcinosis; Y, yes and age first detected; N, no.

  • f

  • U/Ca, urine calcium, shown as mg/24 h when ≥18 yr or as mg/kg per 24 h when <18 yr (underlined), unless otherwise shown.

  • g

  • U/Ox, urine oxalate, shown as mg/24 h when ≥18 yr or as mg/1.73 m2 when <18 yr (underlined), unless otherwise shown.

  • h

  • U/pH, urine pH.

  • i

  • U/Cit, urine citrate, shown in mg/24 h when ≥18 yr or as mg/g creatinine when <18 yr (underlined). Creatinine normalization (mg/g creatinine).

  • j

  • Comments: BRS, blepharophimosis renal syndrome; DI, diabetes insipidus; DM2, diabetes mellitus; LK, left kidney; LVD, left ventricular dysfunction; MSK, medullary sponge kidney; Ox, oxalate; VSD, ventricular septal defect.


    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多