分享

风对植物的作用及植物适应对策研究进展

 梦莳兰 2022-08-14 发布于湖北
参考文献
[1] Hughes L. Climate change and Australia: Trends, projections and impacts[J]. Austral Ecology, 2003, 28(4): 423-443. [本文引用:1] [JCR: 1.738]
[2] Grace J. Plant Response to Wind[M]. California: Academic Press, 1977. [本文引用:1]
[3] Coutts M P, Grace J. Wind and Trees[M]. Cambridge: Cambridge University Press, 1995. [本文引用:1]
[4] Onoda Y, Anten N P R. Challenges to understand plant responses to wind[J]. Plant Signaling & Behavior, 2011, 6(7) : 1057-1059 [本文引用:1]
[5] Ennos A R. Wind as an ecological factor[J]. Trends in Ecology and Evolution, 1997, 12 : 108-111. [本文引用:3]
[6] Vogel S.  Leaves in the lowest and highest winds: Temperature, force and shape[J]. New Phytologist, 2009, 183: 13-26. [本文引用:1] [JCR: 6.736]
[7] Cordero R A, Fetcher N, Voltzow J. Effects of wind on the allometry of two species of plants in an elfin cloud forest[J]. Biotropica, 2007, 39(2): 117-185. [本文引用:1] [JCR: 2.351]
[8] Nan Jiang, Zhao Xiaoying, Yu Baofeng. The effect of simulated chronic high wind on the phenotype of Salsola arbuscula[J]. Acta Ecologica Sinica, 2012, 32(20): 6 354-6 360.
[南江, 赵晓英, 余保峰. 模拟长期大风对木本猪毛菜表观特征的影响[J]. 生态学报, 2012, 32(20): 6 354-6 360. ] [本文引用:2]
[9] Wang Y H, He W M, Dong M, et al. Effects of shaking on the growth and mechanical properties of Hedysarum leave may be independent of water regimes[J]. International Journal of Plant Sciences, 2008, 169(4): 503-508. [本文引用:3] [JCR: 1.54]
[10] Li S L, Werger M J A, Zuidema P A, et al. Seedlings of the semi-shrub Artemisia ordosica are resistant to moderate wind denudation and sand burial in Mu Us sand land , China[J]. Trees, 2010, 24: 515-521. [本文引用:1] [JCR: 1.925]
[11] Smith V C, Ennos A R. The effects of air flow and stem flexure on the mechanical and hydraulic properties of the stems of sunflowers Helianthus annuus L. [J]. Journal of Experimental Botany, 2003, 383(54): 845-849. [本文引用:1] [JCR: 5.242]
[12] Liu Y. Differential response to wind and shade in mother leaf of Potentilla reptans[J]. Acta Ecologica Sinica, 2007, 27(7): 2 756-2 764. [本文引用:1] [CJCR: 2.139]
[13] Vogel S. Drag and reconfiguration of broad leaves in high wind[J]. Journal of Experimental Botany, 1989, 40: 941-948. [本文引用:1] [JCR: 5.242]
[14] Riedere M, Schreiber L. Protecting against water loss: Analysis of the barrier properties of plant cuticles[J]. Journal of Experimental Botany, 2001, 52(363): 2 023-2 032. [本文引用:1] [JCR: 5.242]
[15] Bosabalidis A M, Kofidis G. Comparative effects of drought stress on leaf anatomy of two olive cultivars[J]. Plant Science, 2002, 163(2): 375-379. [本文引用:1] [JCR: 2.922]
[16] Wirthensohn M G, Sedgley M. Epicuticular wax structure and regeneration on developing Juvenile Eucalyptus leaves[J]. Australian Journal of Botany, 1996, 44(6): 691-704. [本文引用:1] [JCR: 1.204]
[17] Niels P R A, Rafael A H. Wind and mechanical stimuli differentially affect leaf traits in Plantago major[J]. New Phytologist, 2010, 188: 554-564. [本文引用:1] [JCR: 6.736]
[18] Grace J. Plant response to wind[J]. Agriculture, Ecosystems and Environment, 1988, 22/23: 71-88. [本文引用:4]
[19] Gulimire, Zhao Xiaoying, Yuan Hui. Leaf anatomical structure of Zygophyllum xanthoxylum under chronic high wind[J]. Acta Botanica Boreali-Occidentalia Sinica, 2012, 32(10): 2 047-2 052.
[古力米热·热孜, 赵晓英, 原慧. 模拟长期大风胁迫对霸王叶解剖结构特征的影响[J]. 西北植物学报, 2012, 32(10): 2 047-2 052. ] [本文引用:1] [CJCR: 1.321]
[20] White D O, Turner N C, Galbraith J H. Leaf water relations and stomatal behavior of four allopatric Eucalyptus species planted in Mediterranean southwestern Australia[J]. Tree Physiology, 2000, 20: 1 157-1 165. [本文引用:1] [JCR: 2.853]
[21] Telewski F W, Jaffe M J. Thigmomorphogenesis: Anatomical, morphological and mechanical analysis of genetically different sibs of Pinus taeda in response to mechanical perturbation[J]. Physiologia Plantarum, 1986, 66(2): 219-226. [本文引用:1] [JCR: 3.656]
[22] Ennos A R. The scaling of root anchorage[J]. Journal of Theoretical Biology, 1993, 161(1): 61-75. [本文引用:1] [JCR: 2.351]
[23] Stokes A, Fitter A H, Coutts M P. Responses of young trees to wind and shading-effects on root architecture[J]. Journal of Experimental Botany, 1995, 46(290): 1 139-1 146. [本文引用:2] [JCR: 5.242]
[24] Tamasi E, Stokes A, Lasserre B, et al. Influence of wind loading on root system development and architecture I in oak(Quercus robur L. )seedlings[J]. Trees-Structure and Function, 2005, 19(4): 374-384. [本文引用:2] [JCR: 1.925]
[25] Danjon F, Fourcaud T, Bert D. Root architecture and wind firmness of mature Pinus pinaster(Ait. )[J]. New Phytologist, 2005, 168: 387-400. [本文引用:1] [JCR: 6.736]
[26] Liu Guojun, Zhang Ximing, Li Xiaorong, et al. Adaptive growth of Tamarix taklamakanensis root systems in response to wind action[J]. Chinese Science Bulletin, 2008, 53: 147-150. [本文引用:1] [CJCR: 0.95]
[27] Dupuy L X, Fourcaud T, Lac P, et al. A generic 3D finite element model of tree anchorage integrating soil mechanics and real root system architecture[J]. American Journal of Botany, 2007, 94(9): 1 506-1 514. [本文引用:1] [JCR: 2.586]
[28] Khuder H, Stokes A, Danjon F, et al. Is it possible to manipulate root anchorage in young trees?[J]. Plant and Soil, 2007, 294(1/2): 87-102. [本文引用:1] [JCR: 2.638]
[29] Nicoll B C, Ray D. Adaptive growth of tree root systems in response to wind action and site conditions[J]. Tree Physiology, 1996, 16(11/12): 891-898. [本文引用:1] [JCR: 2.853]
[30] Yu Yunjiang, Shi Peijun, Lu Chunxia, et al. Response of the eco-physiological characteristics of some plants under blown sand [J]. Acta Phytoecologica Sinica, 2003, 27(1): 53-58.
[于云江, 史培军, 鲁春霞, . 不同风沙条件对几种植物生态生理特征的影响[J]. 植物生态学报, 2003, 27(1): 53-58. ] [本文引用:1] [CJCR: 1.989]
[31] Qu Hao, Zhao Xueyong, Yue Guangyang, et al. Physiological response to wind of some common plants in Horqin Sand Land [J]. Journal of Desert Research, 2009, 29(4): 668-673.
[曲浩, 赵学勇, 岳广阳, . 科尔沁沙地几种常见植物对风胁迫的生理响应[J]. 中国沙漠, 2009, 29(4): 668-673. ] [本文引用:1] [CJCR: 2.099]
[32] Zhao Halin, He Yuhui, Yue Guangyang, et al. Effects of wind blow and sand burial on the seedling growth and photosynthetic and transpiration rates of desert plants[J]. Chinese Journal of Ecology, 2010, (3): 413-419.
[赵哈林, 何玉惠, 岳广阳, . 风吹、沙埋对沙地植物幼苗生长和光合蒸腾特性的影响[J]. 生态学杂志, 2010, (3): 413-419. ] [本文引用:1] [CJCR: 1.729]
[33] White D O, Turner N C, Galbraith J H. Leaf water relations and stomatal behavior of four allopatric Eucalyptus species planted in Mediterranean southwestern Australia[J]. Tree Physiology, 2000, 20: 1 157-1 165. [本文引用:1] [JCR: 2.853]
[34] Niklas K J. Differences between Acer saccharum leaves from open and wind-protected sites[J]. Annals of Botany, 1996, 78(1): 61-66. [本文引用:1] [JCR: 3.449]
[35] Ibrahim S, Mustapha S, Rand jbaran E, et al. Comparison of daily and monthly results of three evapotranspiration models in tropical zone: A case study[J]. American Journal of Environmental Sciences, 2009, 5(6): 698-705. [本文引用:1]
[36] Anten N P R, Alcalá-Herrera R, Schieving F, et al. Wind and mechanical stimuli differentially affect leaf traits in Plantago major[J]. New Phytologist, 2010, 188(2): 554-564. [本文引用:2] [JCR: 6.736]
[37] James J C, Grace J, Hoad S P. Growth and photosynthesis of Pinus sylvestris at its altitudinal limit in Scotland [J]. Journal of Ecology, 1994, 82: 297-306. [本文引用:1] [JCR: 5.431]
[38] Grant S A, Hunter R F. The effects of frequency and season of clipping on the morphology, productivity and chemical composition of Calluna vulgaris(L. )Hull[J]. New Phytologist, 1966, 65: 125-133. [本文引用:1] [JCR: 6.736]
[39] Coutand C. Mechanosensing and thigmomorphogenesis, a physiological and biomechanical point of view[J]. Plant Science, 2010, 179: 168-182. [本文引用:1] [JCR: 2.922]
[40] Braam J. In touch: Plant responses to mechanical stimuli[J]. New Phytologist, 2005, 165: 373-389. [本文引用:1] [JCR: 6.736]
1
2003
1.738
0.0
... 大风会对农作物和森林造成危害,随着全球变暖,未来大风发生的频率将增大[1],风对农林业的危害也将更加严重 ...
1
1977
0.0
0.0
... 上世纪60-70年代,针对风对农业的危害,开展了大量研究,第一部有关植物风生态学方面的专著《Plant responses to wind》[2]于1977年出版,这可以看作植物风生态学的研究的第一阶段,通过调整某一生态因子,定量研究风对植物的机械损伤以及风对植物及其环境在热量和物质传输方面的影响,继而对植物水分利用以及农作物产量和品质的影响 ...
1
1995
0.0
0.0
... 学术讨论会于1993年在英国召开,参会论文以《Wind and trees》文集形式出版[3],之后每隔几年召开一次会议, 2011年在美国召开了#cod#x0201c ...
1
2011
0.0
0.0
... 第三阶段为近10多年,开始尝试把风造成的机械刺激和由风引起的其它作用分开考虑,有关生理响应的研究涉及植物的机械性感受和信号传导[4] ...
3
1997
0.0
0.0
... [5],有助于减少风对树冠的拖拽力 ...
... Ca2 浓度的增加被触觉基因(TCHs)感知[40],它能激活下游的传导机构,包括一系列的信号分子和植物激素,以此改变生理学和发育过程[5] ...
... 4 综合性适应策略综上所述,风对植物的作用包括直接的机械刺激及风引起的叶环境(尤其是气温和气体交换特性)变化而产生的间接作用,即,风的作用具有机械作用和干旱作用,植物的适应策略因植物种、植物的大小、构型甚至同一植物的不同部位及其所处的地理环境的不同而不同[5] ...
1
2009
6.736
0.0
... 风还会影响树木的发育,使植冠构型更紧凑,侧枝与主干的夹角减小,这样既不影响对光的捕获,又增加了对风的抵抗能力,欧洲赤松(Pinus sylvestris)[6]和糖槭(Acer saccharum)、海岸松(Pinus pinaster)、黑松(Pinus thunbergii)[7]以及温带干旱区的灌木木本猪毛菜(Salsola arbuscula)[8]的研究结果即如此 ...
1
2007
2.351
0.0
... 风还会影响树木的发育,使植冠构型更紧凑,侧枝与主干的夹角减小,这样既不影响对光的捕获,又增加了对风的抵抗能力,欧洲赤松(Pinus sylvestris)[6]和糖槭(Acer saccharum)、海岸松(Pinus pinaster)、黑松(Pinus thunbergii)[7]以及温带干旱区的灌木木本猪毛菜(Salsola arbuscula)[8]的研究结果即如此 ...
2
2012
0.0
0.0
... 风还会影响树木的发育,使植冠构型更紧凑,侧枝与主干的夹角减小,这样既不影响对光的捕获,又增加了对风的抵抗能力,欧洲赤松(Pinus sylvestris)[6]和糖槭(Acer saccharum)、海岸松(Pinus pinaster)、黑松(Pinus thunbergii)[7]以及温带干旱区的灌木木本猪毛菜(Salsola arbuscula)[8]的研究结果即如此 ...
... 向日葵(Helianthus annuus)的叶面积可减小60%[11],木本猪毛菜(Salsola arbuscula)[8]和近地面生长的匍匐委陵菜(Potentilla reptans)的叶片数量却增多[12] ...
3
2008
1.54
0.0
... 有些植物通过增大顺风向的基径来增大弯曲抵抗力,如,辐射松(Pinus radiata)、北美云杉(Picea sitchensis)等裸子植物和毛乌素沙地的羊柴(Hedysarum leave)[9],而有些植物通过减小基径应对风,如Cecropia schreberiana、塔落岩黄芪(Hedysarum leave)[9] ...
... 有些植物通过增大顺风向的基径来增大弯曲抵抗力,如,辐射松(Pinus radiata)、北美云杉(Picea sitchensis)等裸子植物和毛乌素沙地的羊柴(Hedysarum leave)[9],而有些植物通过减小基径应对风,如Cecropia schreberiana、塔落岩黄芪(Hedysarum leave)[9] ...
... 植物还可通过调整叶性特点来减小风的阻力,糖槭树、欧洲山杨 (Populus tremula)、塔落岩黄芪(Hedysarum leave)、黑沙蒿(Artemisia ordosica)[9,10]、白芥(Sinapis alba)等植物表现为叶的数量减少、叶面积减小 ...
1
2010
1.925
0.0
Trees-struct Funct. 2010, 24(3):515 - 521 DOI:10.1007/s00468-010-0422-0
Shou-Li Li(124)   Marinus J. A. Werger(2)   Pieter A. Zuidema(2)   Fei-Hai Yu(31)   Ming Dong(1)   
1.State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
2.Ecology and Biodiversity Group, Institute of Environmental Biology, Utrecht University, PO Box 80084, 3508 Utrecht, The Netherlands
3.College of Nature Conservation, Beijing Forestry University, Beijing, 100083 China
4.Graduate University of Chinese Academy of Sciences, Beijing, 100049 China
Sand movement is a common stress for plants in dune ecosystems. Seedlings in such an environment often experience various degrees of denudation or burial. A field experiment was conducted withArtemisia ordosica, a dominant semi-shrub species in Mu Us sandland, China, to test seedling survival and growth under different degrees of denudation and burial. Seedlings from two cohorts with height of 5.0 ± 0.02 cm (S1) and 9.3 ± 0.09 cm (S2) were selected and randomly subjected to three denudation treatments (2.5, 5, and 10 cm), five burial treatments (2.5, 5, 7.5, 10, and 15 cm), or a control.S2 seedlings had a higher survivorship thanS1 seedlings, especially under severe denudation (10 cm) and complete burial (5 cm inS1; 10 cm inS2). Seedling survivorship was unaffected by moderate burial (<5 cm inS1;<10 cm inS2) or denudation (<10 cm), but it was significantly reduced under complete burial or severe denudation. Seedling growth in leaf area, height, and biomass only declined in severe denudation or complete burial. Seedling burial led to higher biomass investment in shoots, while the reverse was the case in denudation. The results indicateA. ordosica is highly tolerant to moderate burial and denudation, showing adaptive responses that likely increase survival. Differences in responses between seedling cohorts suggest that large seedling size is beneficial for successful establishment in sandy environments and measures to prevent severe denudation and burial of recently germinated seedlings are necessary in attempts to restore steppe vegetations.
... 植物还可通过调整叶性特点来减小风的阻力,糖槭树、欧洲山杨 (Populus tremula)、塔落岩黄芪(Hedysarum leave)、黑沙蒿(Artemisia ordosica)[9,10]、白芥(Sinapis alba)等植物表现为叶的数量减少、叶面积减小 ...
1
2003
5.242
0.0
... 向日葵(Helianthus annuus)的叶面积可减小60%[11],木本猪毛菜(Salsola arbuscula)[8]和近地面生长的匍匐委陵菜(Potentilla reptans)的叶片数量却增多[12] ...
1
2007
0.0
2.139
Acta Ecol Sin. 2007, 27(7):2756 - 2764
LIUYun
刘芸
生长在一个密集植物群中的植株由于相互遮蔽而不可能对风的影响做出反应,因为这样的环境条件(有限的光资源)对由风导致的矮小表型植株的生长是不利的.为弄清在密集植物群体中生长的植株对风的响应,利用藤本植物Potentilla reptans的10种基因型做实验材料,在温室条件下(光照强度为日光照的50%,红光/远红光=1.2)模拟冠层遮阴(相当于15%的日光照,红光/远红光=0.3),研究了藤本植物叶对风的响应.结果表明,Potentilla reptans的10种基因型植株在冠层遮阴下(低的红光/远红光)都表现出典型的避阴生长响应:较少的叶(叶生物量少),长而细但硬度系数高(higher Young's modulus)的叶柄;而受风影响的植株,无论遮阴或不遮阴,其植株的叶相对较多,叶柄短、粗且柔韧性强(lower Young's modulus),说明Potentilla reptans叶对风的响应并未因遮阴而被压抑,其可塑性变化不过是对复杂生境做出的一种生长权衡:尽可能增强抗风能力(矮壮)和获取最大光能(足够高而避免被遮光),即保证在存活下去的前提下获取最大的生长效率.
Abstract:
Responses to mechanical stress(such as wind)should be suppressed in dense vegetation since the resultant shorter stature would lead to low fitness.However,this point has been debated,i.e.it has been argued that in dense vegetations a sensitivity to mechanical stress might provide an additional cue to shade avoidance.For 10 different genotypes of the clonal plant Potentilla reptans,the effects of shade(15% of daylight with a red:far red ratio,R/FR of 0.3 vs.50% daylight and R/FR of 1.2)and wind(0 or 40 daily brushes with a duster)on the mother leaf properties were investigated.All genotypes exhibited typical'shade avoidance' responses under shade,such as the production of fewer leaves with longer petioles,reductions in petiole diameter,and the production of more rigid petiole tissue(petioles with a higherYoung'modulus).Wind-treated plants produced more leaves with shorter and thicker petioles made of nlore flexible tissue (lower Young's modulus).All responses to wind are different from responses to shade.Interestingly the responses to wind in leaf of Potentilla reptans were opposite in nature to the responses to light.
... 向日葵(Helianthus annuus)的叶面积可减小60%[11],木本猪毛菜(Salsola arbuscula)[8]和近地面生长的匍匐委陵菜(Potentilla reptans)的叶片数量却增多[12] ...
1
1989
5.242
0.0
... 另外,风胁迫下有些植物的叶柄更细,更短,柔韧性更好,如白橡树(Quercus alba)的[13] ...
1
2001
5.242
0.0
... 叶表面的蜡层具有防止水分蒸发、保护叶片免受机械刺激、紫外辐射以及昆虫和病原体侵害的功能[14,15],一定强度的风会造成片叶相互摩擦,损伤蜡层,对草莓(Fragaria ananassa)、野生酸沼草(Molinia caerulea)、桐叶槭(Acer pseudoplatanus)等植物的研究已有证实 ...
1
2002
2.922
0.0
... 叶表面的蜡层具有防止水分蒸发、保护叶片免受机械刺激、紫外辐射以及昆虫和病原体侵害的功能[14,15],一定强度的风会造成片叶相互摩擦,损伤蜡层,对草莓(Fragaria ananassa)、野生酸沼草(Molinia caerulea)、桐叶槭(Acer pseudoplatanus)等植物的研究已有证实 ...
1
1996
1.204
0.0
... 当然,有些植物具有自我修复的能力,如桉树(Juvenile Eucalyptus)的蜡层受磨损后,经过一定时间可自行恢复[16] ...
1
2010
6.736
0.0
... 大车前(plantago major)在短期风的作用下,栅栏组织即增厚[17],高羊茅(Festuca arundinacea)、黑麦草(Lolium perenne)[18]、霸王(Zygophyllum xanthoxylum)[19]等植物也有相似的表现 ...
4
0.0
0.0
... 大车前(plantago major)在短期风的作用下,栅栏组织即增厚[17],高羊茅(Festuca arundinacea)、黑麦草(Lolium perenne)[18]、霸王(Zygophyllum xanthoxylum)[19]等植物也有相似的表现 ...
... 短期的风作用下,叶片通过调节气孔的开合来调节蒸腾作用[18],中风作用下植物通过调整细胞渗透压来维持膨压[33],长期风作用下植物通过调整总叶面积和叶片结构来适应环境[34] ...
... 有关农作物的遮风实验表明,遮风后作物的温度可提高1-2℃[18],温度的提高会影响细胞分裂的速度、叶片的发育以及气孔下腔的水分蒸腾压力,继而影响植物的生长发育和水分利用效率 ...
... 而欧石楠(Calluna vulgaris)则以叶状芽来补偿80%的叶面积[38],从而增加光合作用面积[18] ...
1
2012
0.0
1.321
... 大车前(plantago major)在短期风的作用下,栅栏组织即增厚[17],高羊茅(Festuca arundinacea)、黑麦草(Lolium perenne)[18]、霸王(Zygophyllum xanthoxylum)[19]等植物也有相似的表现 ...
1
2000
2.853
0.0
... 叶脉起着支持和输导的作用,大的中脉可提高叶片的强度,从而避免叶片因大风而变形[20] ...
1
1986
3.656
0.0
... 植物茎解剖结构对风的响应因植物种的不同而不同,草本植物表现为机械组织发达,而冷杉(Abies fraseri)和火炬松(Pinus taeda)等裸子植物表现为次生木质部发达,从而增加了茎的硬度[21] ...
1
1993
2.351
0.0
... 植物的能量分配必须在生长和固着之间进行权衡[22] ...
2
1995
5.242
0.0
... 欧洲落叶松(Larix decidua)迎风面和背风面的侧根数分别增加了57%和49%,北美云杉(Picea Sitchensis)迎风面的侧根长度约为背风面的两倍[23] ...
... 如,北美云杉(Picea Sitchensis)在成株阶段,背风面的根系生物量比迎风面的大[29],而在幼苗阶段其迎风面根系的长和直径均比背风面的大[23] ...
2
2005
1.925
0.0
Trees-struct Funct. 2005, 19(4):374 - 384 DOI:10.1007/s00468-004-0396-x
Elisabetta Tamasi(12)   Alexia Stokes(2)   Bruno Lasserre(12)   Fréderic Danjon(4)   Stéphane Berthier(26)   Thierry Fourcaud(3)   Donato Chiatante(15)   
1.Dipartimento di Scienze e Tecnologie per l′Ambiente ed il Territorio Università degli Studi del Molise Via Mazzini 8 86170 Isernia Italy
2.Laboratoire de Rhéologie du Bois de Bordeaux Unit: CNRS/INRA/Université Bordeaux I Domaine de l′Hermitage, 69, Route d’Arcachon 33612 Cestas Cedex France
3.CIRAD Unité de Modélisation des Plantes Laboratoire de Rhéologie du Bois de Bordeaux Domaine de l′Hermitage, 69, Route d’Arcachon 33612 Cestas Cedex France
4.INRA Ephyse, Recherches Forestières 69, route d’Arcachon 33612 Cestas Cedex France
5.Dipartimento di Scienze Chimiche ed Ambientali Università degli Studi dell’Insubria Via Valleggio 11 22100 Como Italy
6.Forest Research Northern Research Station Roslin Midlothian EH25, 9SY UK
The effect of wind loading on seedlings of English oak (Quercus robur L.) was investigated. Instead of using a traditional wind tunnel, an innovative ventilation system was designed. This device was set up in the field and composed of a rotating arm supporting an electrical fan, which emitted an air current similar to that of wind loading. Oaks were sown from seed in a circle around the device. A block of control plants was situated nearby, and was not subjected to artificial wind loading. After 7 months, 16 plants from each treatment were excavated, and root architecture and morphological characteristics measured using a 3D digitiser. The resulting geometrical and topological data were then analysed using AMAPmod software. Results showed that total lateral root number and length in wind stressed plants were over two times greater than that in control trees. However, total lateral root volume did not differ significantly between treatments. In comparing lateral root characters between the two populations, it was found that mean root length, diameter and volume were similar between the two treatments. In trees subjected to wind loading, an accentuated asymmetry of root distribution and mean root length was found between the windward and leeward sides of the root system, with windward roots being significantly more numerous and longer than leeward roots. However, no differences were found when the two sectors perpendicular to the wind direction were compared. Mean tap root length was significantly higher in control samples compared to wind stressed plants, whilst mean diameter was greater in the latter. Wind loading appears to result in increased growth of lateral roots at the expense of the tap root. Development of the lateral root system may therefore ensure better anchorage of young trees subjected to wind loading under certain conditions.
... 9倍[24] ...
... 夏橡(Quercus robur)在风胁迫下迎风面分支增多[24],海岸松(Pinus pinaster)浅层根系的水平分支增多[28] ...
1
2005
6.736
0.0
... 52倍[25] ...
1
2008
0.0
0.95
Chin Sci Bull. 2008, 53(zkII):147 - 150
LiuGuojun,ZhangXiming,LiXiaorong,et al.Adaptive growth of Tamarix taklamakanensis root systems in response to wind action[J].Chinese Science Bulletin,2008,53:147-150.
刘国军①②③, 张希明①③, 李晓荣, 魏疆①⑤, 单立山①②

采用全根挖掘的方法对塔克拉玛干沙漠腹地的成年塔克拉玛干柽柳根系分布的范围、垂直深度和特征分别进行了测量和研究. 塔克拉玛干柽柳浅层侧根根系的形态分布与沙漠腹地的主导风向有着密切的关系; 同时, 垂直根分布深度受地下水水位的抑制. 植株迎风面根系重量和长度的分布远远小于背风面. 与此同时, 柽柳背风面根径厚度相对于迎风面有明显增加. 因此, 塔克拉玛干柽柳对沙漠腹地多风生境的适应性响应是通过增加其背风面根系的分布和根径的厚度来实现的.

... 44倍[26] ...
1
2007
2.586
0.0
... 侧根的直径与根系的抗拉能力密切相关,松杉类的根系在背风面的直径较大,美洲黑杨(Populus deltoides)与毛果杨(Populus trichocarpa)直径大的侧根更有利于固着[27] ...
1
2007
2.638
0.0
Plant Soil. 2007, 294(1-2):87 - 102 DOI:10.1007/s11104-007-9232-6
Hayfa Khuder(1)   Alexia Stokes(23)   Frédéric Danjon(4)   Kyriaki Gouskou(45)   Frédéric Lagane(4)   
1.Université Bordeaux I, INRA, CNRS, UMR US2B Talence 33405 France
2.INRA, LIAMA-CASIA P.O. Box 2728 Haidian District 100080 Beijing China
3.INRA, Botanique et Bioinformatique de l’Architecture des Plantes (AMAP) TA A-51/PS2, Boulevard de la Lironde Montpellier Cedex 5 34398 France
4.INRA, UR1263 EPHYSE 69 route d’Arcachon F-33612 Cestas France
5.NAGREF, Forest Research Institute Vassilika, Thessaloniki 57006 Greece
The optimal root system architecture for increased tree anchorage has not yet been determined and in particular, the role of the tap root remains elusive. In Maritime pine (Pinus pinaster Ait.), tap roots may play an important role in anchoring young trees, but in adult trees, their growth is often impeded by the presence of a hard pan layer in the soil and the tap root becomes a minor component of tree anchorage. To understand better the role of the tap root in young trees, we grew cuttings (no tap root present) and seedlings where the tap root had (−) or had not ( ) been pruned, in the field for 7 years. The force (F) necessary to deflect the stem sideways was then measured and divided by stem cross-sectional area (CSA), giving a parameter analogous to stress during bending. Root systems were extracted and root architecture and wood mechanical properties (density and longitudinal modulus of elasticity,EL) determined. In seedlings (−) tap roots, new roots had regenerated where the tap root had been pruned, whereas in cuttings, one or two lateral roots had grown downwards and acted as tap roots. Cuttings had significantly less lateral roots than the other treatments, but those near the soil surface were 14% and 23% thicker than plants ( ) and (−) tap roots, respectively. Cuttings were smaller than seedlings, but were not relatively less resistant to stem deflection, probably because the thicker lateral roots compensated for their lower number. Apart from stem volume which was greater in trees ( ) tap roots, no significant differences with regard to size or any root system variable were found in plants (−) or ( ) tap roots. In all treatments, lateral roots were structurally reinforced through extra growth along the direction of the prevailing wind, which also improved tap root anchorage. Predictors of log F/CSA differed depending on treatment: in trees (−) tap roots, a combination of the predictors stem taper and %volume allocated to deep roots was highly regressed with log F/CSA (R2 = 0.83), unlike plants ( ) tap roots where the combined predictors of lateral root number and root depth were best regressed with log F/CSA (R2 = 0.80). In cuttings, no clear relationships between log F/CSA and any parameter could be found. Wood density andEL did not differ between roots, but did diminish with increasing distance from the stem in lateral roots.EL was significantly lower in lateral roots from cuttings. Results showed that nursery techniques influence plant development but that the architectural pattern of Maritime pine root systems is stable, developing a sinker root system even when grown from cuttings. Anchorage is affected but the consequences for the long-term are still not known. Numerical modelling may be the only viable method to investigate the function that each root plays in adult tree anchorage.
... 夏橡(Quercus robur)在风胁迫下迎风面分支增多[24],海岸松(Pinus pinaster)浅层根系的水平分支增多[28] ...
1
1996
2.853
0.0
... 如,北美云杉(Picea Sitchensis)在成株阶段,背风面的根系生物量比迎风面的大[29],而在幼苗阶段其迎风面根系的长和直径均比背风面的大[23] ...
1
2003
0.0
1.989
Chin J Plant Ecol. 2003, 27(1):53 - 58
YU Yun-Jiang, SHI Pei-Jun, LU Chun-Xia and LIU Jia-Qiong
于云江,史培军,鲁春霞,刘家琼
Blown sand is very common in nature. In areas with frequent blown sand, especially arid and semi-arid areas, blown sand not only buries highways and railways but also poses a threat to the sustainable use and development of plant resources. In the past, researchers have conducted many studies of sand-burying and wind erosion, but there are few studies on the effect of blown sand on plant eco-physiology. The nature of the influence of blown sand on the eco-physiological characteristics of plants is an important question. Though scientists have observed and studied some effects of wind on morphological characters and transpiration ratios the effects of blown sand on the net photosynthetic rate, water use efficiency etc. of plants are unknown. In this paper, based on experimental methods we showed relations between different blown sand conditions and some ecophysiological characteristics in plants, and revealed adaptability of experimental plants to blown sand by observing the change of hotosynthesis and water use efficiency in plants. In this paper, using a field wind tunnel, the effects of blown sand on the growth characteristics of some sand-fixing plants (Eragrostis poaeoides Beauv.,Agriophyllum squarrosum, Bassia dasyphylla Kuntze,Caragana korshinskii Kom., Artemisia ordosica Krasch,Reaumuria soongorica Maxim, Ammopiptanthus mongolicus Cheng f., Hedysarum scoparium L.,Robinia pseudoacacia L.) were studied under different wind conditions including different wind velocities (5.9, 7.9, 9.9, 14 m·s-1 etc.) and blowing intervals (2 d, 4 d, 9 d), and some eco-physiological parameters were measured. The results showed: 1) Both wind and wind-sand current made net photosynthetic ratio (Pn) decrease and transpiration ratio (E) rise, and thus made water use efficiency (WUE) decrease. 2) The larger the wind velocity was or the shorter the blowing interval by wind-sand was, the larger the reduction in Pn; the effect of wind-sand current on the above index was greater than the effect of pure wind. The more fierce the wind-sand menace to the plants was, the less the substance accumulation was, and thus the more slowly the plant grew in height; 3) Wind-sand current aggravated desiccation of plants, due to the reduction in WUE. Meanwhile sand-fixing plants have adaptability to wind-sand current. The shrubs showed more adaptability to wind-sand current than the grasses. According to the change of WUE in experimental plants under blown sand conditions, the adaptability of experimental shrubs to blown sand ranks as follows: Reaumuria soongorica >Ammopiptanthus mongolicus > Caragana korshinskii>Artemisia ordosica >Hedysarum scoparium > Robinia pseudoacacia. This ranking corresponds with the order in their capability of resisting drought. (4) The affecting capability of the blown sand on different plants is different. In this experiment, the change in Pn and WUE for grasses is more than shrubs, and the change for Artemisia ordosica is less than for Agriophyllum squarrosum under higher velocity.
在野外风洞条件下,就不同风况的风沙胁迫对几种固沙植物生态生理特征的影响进行了实验研究。实验采用了沙坡头地区的野外植物和盆栽植物。在不同风速(5.9 m·s-1, 7.9 m·s-1, 9.9 m·s-1,14 m·s-1, 10 m·s-1,15 m·s-1, 20 m·s-1)和吹袭时间间隔(2 d, 4 d, 9 d)下测定了植物3个生理生态参数的变化。实验结果表明:1)净风和风沙流胁迫均可使植物的净光合速率(Pn)降低,蒸腾速率(E)升高,从而导致水分利用效率(WUE)下降。净风和风沙流对植物生理生态特征的影响显著不同。同样为14 m·s-1的风速时,风沙流使植物的Pn降低40.7%,而净风使其降低了35.88%。2)吹袭的时间间隔越短,植物的净光合速率降幅越大;风沙流比净风的影响更大。在2 d, 4 d, 9 d为间隔的风沙流吹袭下,油蒿(Artemisia ordosica)的Pn分别下降了20.13%、 11.76%、 7.72%。风沙胁迫强度越大,物质积累越少,植物的高生长越慢。3)由于风沙流降低了水分利用率,从而增加了对植物的干燥作用。从总体来看,沙生植物对风沙流胁迫有一定的适应响应,实验所用灌木较草本植物有更强的抗风性。
... 小叶锦鸡儿(Caragana microphylla)等沙生植物在短期的和风和劲风作用下其蒸腾速率和净光合速率增加[30,31,32] ...
1
2009
0.0
2.099
J Desert Res. 2009, 29(4):668 - 673
QU Hao1,2, ZHAO Xue-yong1, YUE Guang-yang1,2, WANG Shao-kun1,2
曲 浩1,2, 赵学勇1, 岳广阳1,2, 王少昆1,2
1.Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China; 2.Graduate School of Chinese Academy of Sciences, Beijing 100049, China
Wind exerts influence on plant, especially in arid and semiarid regions. In the portable wind tunnel, the net photosynthetic ratio(Pn), stomata conductance(Gs) and transpiration ratio(Ts) of four kinds common plants (Agriophyllum squarrosum, Corispermum macrocarpum, Lespedeza davurica and Digitaria cilliaris) in Horqin Sand Land were measured with a Li-6400 under different air velocities (4 and 8 m·s-1) and blowing duration (20 to 120 min). The results showed that wind made Pn, Gs and Ts decreased significantly with elevated wind levels and blowing duration. At the air velocity of 4 m·s-1, the Pn, Gs and Ts of plants inside the wind tunnel were 47.2%~89.3%, 49.4%~90.1% and 45.7%~86.5% lower than the beginning, respectively. Similarly, Pn, Gs and Ts remained lower as a result of 8 m·s-1 air current, and the decreasing extent was 59.2%~91.3%, 47.3%~93.5% and 69.5%~91.8% respectively. All the indices measured at the air velocity of 8 m·s-1 decreased more than that at the air velocity of 4 m·s-1 except the Gs of Lespedeza davurica. Furthermore, the water use efficiency (WUE) presented evident uptrend at the beginning of wind treatment, suggesting that sand-fixing plants have adaptability to the wind current in short time. However, continuous strong wind current more than 60 min would cause the WUE turning to drop.
风在自然界很常见,对植物也有很大影响,尤其在多风沙的干旱、半干旱地区。本研究以科尔沁沙地4种常见植物:沙米、大果虫实、胡枝子和马唐为对象,采用便携式风洞对以上4种植物进行不同吹风强度(4 m·s-1和8 m·s-1)和吹风时间(20~120 min)的处理,同时利用Li-6400光合作用测定仪对植物的净光合速率(Pn)、气孔导度(Gs)和蒸腾速率(Ts)的变化进行测定,以研究这4种植物对风胁迫的生理响应。结果表明:4种植物的Pn、Gs和Ts均随着风速的增大和吹风时间的加长而显著降低。在4 m·s-1风速下,4种植物的Pn、Gs和Ts在吹风结束时分别降低了47.2%~89.3%,49.4%~90.1%,45.7%~86.5%。同样,在8 m·s-1风速下,4种植物Pn、Gs和Ts的降幅分别为59.2%~91.3%,47.3%~93.5%,69.5%~91.8%。除了胡枝子的Gs外,其他所测指标在8 m·s-1风速下的降幅均大于在4 m·s-1风速下。4种植物的水分利用效率(WUE)在吹风的初期均有所升高,但当吹风时间超过60 min后则普遍开始下降,这说明固沙植物对短时风胁迫具有一定的适应性。
... 小叶锦鸡儿(Caragana microphylla)等沙生植物在短期的和风和劲风作用下其蒸腾速率和净光合速率增加[30,31,32] ...
1
2010
0.0
1.729
Chin J Ecol. 2010, 29(3):413 - 419
 DIAO Ha-Lin1**;HE Yu-Hui1;YUE An-Yang1;ZHOU Rui-Lian2;
赵哈林1**;何玉惠1;岳广阳1;周瑞莲2
1Cold and Arid Regions Environment and Engineering Institute, Chinese Aca
demy of Sciences, Lanzhou 730000, China|2Faculty of Life Sciences,
 Ludong University, Yantai 264025, Shandong, China

Aimed to understand the effects of wind blow and sand burial on the ph
ysiological and ecological properties of desert plants, a field experiment with
Caragana microphilla was conducted in Horqin Sand Land in 2006 and 2007. The
 wind blow experiment had five treatments, i.e., 0, 2, 4, 6, and 8 m·s-1
of wind velocity, and the sand burial experiment also had five treatments, i.e.,
〖JP2〗 none, light, moderate, heavy, and severe sand burial, with 0, 33%, 66%, 100%, a
nd 133% of plant height sandburied. A continuous wind blow with a velocity of
2 m·s-1 resulted in a slight decrease of photosynthetic rate and transpir
ation rate, that of 6〖KG-*2〗-〖KG-*7〗8 m·s-1 increased the two rates o
bviously, while a continuous wind blow with a velocity of 4 m·s-1 had no
obvious effects on the photosynthetic and transpiration rates. Light sand burial
 promoted the stem, leaf, and root growth, and increased the biomass of C. mic
rophilla, moderate sand burial only promoted the root growth and increased the
 biomass but restrained the height growth, while heavy and severe sand burial in
jured the plant growth seriously, even resulted in plant death. As a dominant sa
ndfixing plant, C. microphilla could adapt the wi
nd blow and sand burial to a certain degree through regulating its growth rhythm
 and physiological characteristics, and thus, had strong capability to adapt w
indsand environment. However, severe wind blow and sand burial could result in
 a severe injury to the plant, even in plant death. Therefore, C. microphilla sh
ould be planted in the place without strong windsand activity when used for fi
xing mobile sand.

为了掌握风吹、沙埋对沙地植物一些生理生态学特性的影响,2006—2007年在科尔
沁沙地对优势固沙植物小叶锦鸡儿进行了风吹和沙埋试验。风吹试验设为对照(不吹风)、
软风(2 m·s-1)、微风(4 m·s-1)、和风(6 m·s-1)和劲风(8
m·s-1)5个处理;沙埋试验设为对照、轻度、中度、重度和严重沙埋5个处理,沙埋
深度分别为株高的0%、33%、66%、100%和133%。结果表明:软风(2 m·s-1)的持续风
吹可使植物叶片蒸腾速率和净光合速率略有下降,和风(6 m·s-1)和劲风(8 m·s
-1)的持续风吹可促进其蒸腾速率和净光合速率明显增加,而微风(4 m·s-1)的
持续风吹对植物蒸腾速率和光合速率影响不明显;轻度沙埋可以同时促进植物地上茎叶和地
下根系的生长和生物产量的提高,中度沙埋仅可促进其根系生长和生物产量的提高,但对其
高生长有一定抑制作用,重度沙埋和严重沙埋可对其生长造成严重威胁,甚至导致死亡;锦
鸡儿作为沙地一种优势固沙植物能够通过生长调节和生理调节来适应一定程度的风吹和沙埋
,因而对风沙环境具有较强的适应性,但重度或严重风吹、沙埋仍然会导致其严重受损,甚
至死亡,因此采用锦鸡儿进行植物固沙时应注意不要将其种植在风沙活动过于强烈的地方。

... 小叶锦鸡儿(Caragana microphylla)等沙生植物在短期的和风和劲风作用下其蒸腾速率和净光合速率增加[30,31,32] ...
1
2000
2.853
0.0
... 短期的风作用下,叶片通过调节气孔的开合来调节蒸腾作用[18],中风作用下植物通过调整细胞渗透压来维持膨压[33],长期风作用下植物通过调整总叶面积和叶片结构来适应环境[34] ...
1
1996
3.449
0.0
... 短期的风作用下,叶片通过调节气孔的开合来调节蒸腾作用[18],中风作用下植物通过调整细胞渗透压来维持膨压[33],长期风作用下植物通过调整总叶面积和叶片结构来适应环境[34] ...
1
2009
0.0
0.0
... 风也会影响植物周围的相对湿度和温度,并通过叶片遮挡影响太阳辐射[35],从而影响光合生理和水分生理 ...
2
2010
6.736
0.0
... 风可以通过减小叶缘层的厚度来增强水分胁迫,从而严重影响植物的发育,风也因加速蒸腾而相应地降低植物的温度[36] ...
... 可见,至少从某种意义上来说,风引起的干旱作用可抵消风的机械作用[36] ...
1
1994
5.431
0.0
... 对欧洲赤松的研究表明,风引起树冠旗形,光合面积减小,但是风会引起枝叶稀疏,以及气体交换的增加,因而光合作用速率增加[37] ...
1
1966
6.736
0.0
... 而欧石楠(Calluna vulgaris)则以叶状芽来补偿80%的叶面积[38],从而增加光合作用面积[18] ...
1
2010
2.922
0.0
... 植物对机械刺激的感应是通过具有伸缩性激活通道的膜带或与细胞壁、PLASMA膜及CY相联的一些连接分子[39]来实现的,这导致了细胞内Ca2 浓度普遍增加 ...
1
2005
6.736
0.0
... Ca2 浓度的增加被触觉基因(TCHs)感知[40],它能激活下游的传导机构,包括一系列的信号分子和植物激素,以此改变生理学和发育过程[5] ...

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多