分享

【都司影像】颈动脉斑块HR-MR影像判读

 忘仔忘仔 2023-10-30 发布于山西
图片

都司影像专栏

图片

颈动脉斑块相关信息

· 约30%缺血性卒中可归因于颈动脉疾病;

· 由于血流动力学原因,颈动脉斑块主要发生在分叉部上下10mm以内。

图片

图片

图片

1、动脉粥样硬化病理机制

      血管内皮损伤→单核细胞进入血管内皮下间隙转化为巨噬细胞→巨噬细胞和平滑肌细胞摄入脂质形成泡沫细胞→聚集形成脂纹→胶原纤维、弹性纤维及蛋白聚糖形成纤维帽→演变成粥样斑块→纤维帽破裂→血栓形成。

AHA分类

图片

2、易损斑块病理学特征

图片
图片

3、不同成像技术显示易损斑块的特征

图片

4、颈动脉斑块高分辨MRI优势

图片

5、颈动脉斑块高分辨MRI扫描条件

图片

颈动脉斑块HR-MR影像判读

管腔

管腔狭窄程度及管壁厚度

斑块管腔面形态

常用参数指标:

✔ 脂质核心占比=脂质核心/管壁面积×100%

✔ 出血占比=出血/管壁面积×100%

✔ 钙化占比=钙化/管壁面积×100%

✔ 斑块体积比管腔狭窄程度更能提示动脉粥样硬化严重性

✔ 管腔面积 Lumen area(LA)

✔ 管壁面积 Wall area(WA)

✔ 总血管面积  Total vessel Area TVA=LA+WA

✔ 标准化管壁指数 Normalized wall index NWI=WA/TVA

1、斑块管腔面形态

图片
图片

2、管腔狭窄程度及管壁厚度

图片
图片

管壁成分

纤维帽和富脂质坏死核心(LRNC)

斑块内出血(IPH)

新生血管与炎症

钙化

1、纤维帽和富脂质坏死核心 (LRNC)

富脂质坏死核心 (LRNC)

· MR是检测LRNC的最佳成像方式;

· 最大LRNC占比>40%提示斑块破裂风险高;

· 重点判读——增强前后T1WI黑血序列。

✔ 3D-TOF稍低信号

✔ T1WI等信号

✔ T2WI/PDWI稍高信号

✔ CE-TIWI几乎没有强化的低信号

图片

纤维帽 (FC)

图片
图片

· 是颈动脉斑块最重要的易损特征之一;

· MRI 是观察纤维帽的首选成像方式;

· 重点判读——CE-T1WI黑血序列。

图片

纤维帽和LRNC

图片

2、斑块内出血(IPH)

· IPH 扩大坏死核心体积,加快斑块进展;

· MRI 是唯一可以准确评估 IPH 的方法;

    ✦ MPRAGE/IR-TFE是显示IPH最常见的序列;

   ✦ 3D-SNAP、MATCH等新序列亦可较好显示IPH。

✔ 3D-TOF高信号

✔ T1WI较高信号

✔ T2WI/PDWI等或高信号

✔ CE-TIWI强化不明显

图片

· IPH 发生在 LRNC 内——成像时信号与LRNC相叠加,在 T1WI 上均呈高信号;

· MPRAGE —— IPH 呈明显高信号

· TOF —— IPH呈高信号, LRNC 呈稍低信号;

· 出血时间决定T2WI信号强度。

图片
图片

左侧颈内动脉狭窄,伴斑块内出血

A. CE-MRA 示左侧颈内动脉光滑、无溃疡狭窄;

B. 斜矢状位MPRAGE 图像广泛的斑块内出血,表现为高信号;

C. IPH 在平扫T1WI上呈高信号,在CE-T1WI上(D)呈等信号;

E. 在 TOF-MRA上,IPH 也呈高信号,但程度低于腔内血流信号。

图片

LRNC无IPH

图片

LRNC伴新鲜IPH

图片

LRNC伴亚急性IPH

3、新生血管与炎症

· 斑块内新生微血管内皮发育不成熟,易破裂;

· 血管新生的程度与炎症和IPH相关;

· 巨噬细胞的存在与斑块破裂风险关系显著;

· CE-MRI 强化,提示存在新生微血管/炎症。

图片
图片

4、钙化

· CT显示钙化更具有优势;

· 钙化在斑块形成中起着复杂的作用;

· 微钙化斑可增加斑块内压力,斑块内钙化区和非钙化区之间的相互作用甚至会增加斑块易损性;

· 斑块中钙化比、绝对钙化体积与缺血性卒中风险的相关。

✔ 3D-TOF低信号,显示最清楚

✔ T1WI低信号

✔ T2WI/PDWI低信号

✔ CE-TIWI低信号

图片

68岁女性颈动脉斑块钙化  

(A)超声、(B)CTA、(C)MRI。

易损斑块特征MRI表现

图片

MRI: Type Ⅰ

图片
图片

Ⅰ型——内膜适应性增厚

MRI: Type Ⅱ

图片
图片

Ⅱ型——充满脂质的巨噬细胞在该区域内聚集(脂肪条纹)

MRI: Type Ⅲ

图片
图片

Ⅲ型——斑块有少量细胞外脂质物质(黑色短箭头),动脉壁偏心性增厚

MRI: Type Ⅳ

图片

IV型——斑块内LRNC形成

LRNC

🔃 纤维帽

颈内动脉管腔

○ 颈外动脉管腔

MRI: Type Ⅴ

图片

Ⅴ型——脂质核上的纤维增厚 (弯曲的箭头 )

🔃 纤维帽

颈内动脉管腔

○ 颈外动脉管腔

MRI: Type Ⅵ

图片
图片

Ⅵ 型——斑块存在裂隙(黑色长箭头) 、血栓形成(星号)或斑块内出血(弯曲的白色箭头)

MRI: Type Ⅶ

图片

VII 型病变——斑块中存在广泛的钙化

MRI: Type Ⅷ

图片

VIII型病变——纤维斑块,管腔严重狭窄

总结(Conclusion)

图片

参考文献

🔻向下滑动查看

[1] Benjamin, EJ, Virani, SS, Callaway, CW, et al. Heart Disease and Stroke Statistics-2018 Update: A Report From the American Heart Association. CIRCULATION. 2018; 137 (12): e67-e492. doi: 10.1161/CIR.0000000000000558.

[2] Underhill, HR, Hatsukami, TS, Cai, J, et al. A noninvasive imaging approach to assess plaque severity: the carotid atherosclerosis score. AM J NEURORADIOL. 2010; 31 (6): 1068-75. doi: 10.3174/ajnr.A2007.

[3] Saba, L, Moody, AR, Saam, T, et al. Vessel Wall-Imaging Biomarkers of Carotid Plaque Vulnerability in Stroke Prevention Trials: A viewpoint from The Carotid Imaging Consensus Group. JACC-CARDIOVASC IMAG. 2020; 13 (11): 2445-2456. doi: 10.1016/j.jcmg.2020.07.046.

[4] Benson, JC, Cheek, H, Aubry, MC, et al. Cervical Carotid Plaque MRI : Review of Atherosclerosis Imaging Features and their Histologic Underpinnings. CLIN NEURORADIOL. 2021; 31 (2): 295-306. doi: 10.1007/s00062-020-00987-y.

[5] Naghavi, M, Libby, P, Falk, E, et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. CIRCULATION. 2003; 108 (14): 1664-72. doi: 10.1161/01.CIR.0000087480.94275.97.

[6] Naghavi, M, Libby, P, Falk, E, et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part II. CIRCULATION. 2003; 108 (15): 1772-8. doi: 10.1161/01.CIR.0000087481.55887.C9.

[7] Saba, L, Yuan, C, Hatsukami, TS, et al. Carotid Artery Wall Imaging: Perspective and Guidelines from the ASNR Vessel Wall Imaging Study Group and Expert Consensus Recommendations of the American Society of Neuroradiology. AM J NEURORADIOL. 2018; 39 (2): E9-E31. doi: 10.3174/ajnr.A5488.

[8] Tan, C.L., Sinha, R., Budohoski, K., Trivedi, R.A. (2015). MR Imaging of Vulnerable Carotid Atherosclerotic Plaques. In: Trivedi, R., Saba, L., Suri, J. (eds) 3D Imaging Technologies in Atherosclerosis. Springer, Boston, MA. https:///10.1007/978-1-4899-7618-5_7.

[9] Kooi, ME, Cappendijk, VC, Cleutjens, KB, et al. Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. CIRCULATION. 2003; 107 (19): 2453-8. doi: 10.1161/01.CIR.0000068315.98705.CC.

[10] Trivedi, RA, U-King-Im, JM, Graves, MJ, et al. In vivo detection of macrophages in human carotid atheroma: temporal dependence of ultrasmall superparamagnetic particles of iron oxide-enhanced MRI. STROKE. 2004; 35 (7): 1631-5. doi: 10.1161/01.STR.0000131268.50418.b7.

[11] Kerwin, W, Xu, D, Liu, F, et al. Magnetic resonance imaging of carotid atherosclerosis: plaque analysis. Top Magn Reson Imaging. 2007; 18 (5): 371-8. doi: 10.1097/rmr.0b013e3181598d9d.

[12] Kock, SA, Nygaard, JV, Eldrup, N, et al. Mechanical stresses in carotid plaques using MRI-based fluid-structure interaction models. J BIOMECH. 2008; 41 (8): 1651-8. doi: 10.1016/j.jbiomech.2008.03.019.

[13] Li, ZY, Howarth, S, Trivedi, RA, et al. Stress analysis of carotid plaque rupture based on in vivo high resolution MRI. J BIOMECH. 2005; 39 (14): 2611-22. doi: 10.1016/j.jbiomech.2005.08.022.

[14] Nieuwstadt, HA, Kassar, ZA, van der Lugt, A, et al. A computer-simulation study on the effects of MRI voxel dimensions on carotid plaque lipid-core and fibrous cap segmentation and stress modeling. PLoS One. 2015; 10 (4): e0123031. doi: 10.1371/journal.pone.0123031.

[15] Porambo, ME, DeMarco, JK. MR imaging of vulnerable carotid plaque. CARDIOVASC DIAGN THE. 2020; 10 (4): 1019-1031. doi: 10.21037/cdt.2020.03.12.

[16] Bos, D, van Dam-Nolen, DHK, Gupta, A, et al. Advances in Multimodality Carotid Plaque Imaging: AJR Expert Panel Narrative Review. AM J ROENTGENOL. 2021; 217 (1): 16-26. doi: 10.2214/AJR.20.24869.

[17] Kopczak, A, Schindler, A, Bayer-Karpinska, A, et al. Complicated Carotid Artery Plaques as a Cause of Cryptogenic Stroke. J AM COLL CARDIOL. 2020; 76 (19): 2212-2222. doi: 10.1016/j.jacc.2020.09.532.

[18] Thompson, RC, Allam, AH, Lombardi, GP, et al. Atherosclerosis across 4000 years of human history: the Horus study of four ancient populations. LANCET. 2013; 381 (9873): 1211-22. doi: 10.1016/S0140-6736(13)60598-X.

[19] Nies, KPH, Smits, LJM, Kassem, M, et al. Emerging Role of Carotid MRI for Personalized Ischemic Stroke Risk Prediction in Patients With Carotid Artery Stenosis. Front Neurol. 2021; 12 718438. doi: 10.3389/fneur.2021.718438.

[20] Takaya, N, Yuan, C, Chu, B. Association between carotid plaque characteristics and subsequent ischemic cerebrovascular events: A prospective assessment with MRI—initial results J VASC SURG. 2006; 43 (5): 1077. doi: 10.1016/j.jvs.2006.04.013.

[21] Chu, B, Yuan, C, Takaya, N, et al. Images in cardiovascular medicine. Serial high-spatial-resolution, multisequence magnetic resonance imaging studies identify fibrous cap rupture and penetrating ulcer into carotid atherosclerotic plaque. CIRCULATION. 2006; 113 (12): e660-1. doi: 10.1161/CIRCULATIONAHA.105.567255.

[22] Cai, JM, Hatsukami, TS, Ferguson, MS, et al. Classification of human carotid atherosclerotic lesions with in vivo multicontrast magnetic resonance imaging. CIRCULATION. 2002; 106 (11): 1368-73. doi: 10.1161/01.cir.0000028591.44554.f9.

[23] Saba, L, Moody, AR, Saam, T, et al. Vessel Wall-Imaging Biomarkers of Carotid Plaque Vulnerability in Stroke Prevention Trials: A viewpoint from The Carotid Imaging Consensus Group. JACC-CARDIOVASC IMAG. 2020; 13 (11): 2445-2456. doi: 10.1016/j.jcmg.2020.07.046.

[24] Kooi, ME, Cappendijk, VC, Cleutjens, KB, et al. Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. CIRCULATION. 2003; 107 (19): 2453-8. doi: 10.1161/01.CIR.0000068315.98705.CC.

[25] Saam, T, Hatsukami, TS, Takaya, N, et al. The vulnerable, or high-risk, atherosclerotic plaque: noninvasive MR imaging for characterization and assessment. RADIOLOGY. 2007; 244 (1): 64-77. doi: 10.1148/radiol.2441051769.

[26] Saba, L, Saam, T, Jäger, HR, et al. Imaging biomarkers of vulnerable carotid plaques for stroke risk prediction and their potential clinical implications. LANCET NEUROL. 2019; 18 (6): 559-572. doi: 10.1016/S1474-4422(19)30035-3.

作者

陈思涵 

武汉大学人民医院放射科

来源

都司影像公众号为武汉大学人民医院放射科官方平台,主要展示科室特色诊疗技术、精选专题讲座、经典临床病例、科研团队最新成果;兼具科室教研动态、会议信息发布功能。

-仅供与医疗卫生专业人士学术沟通使用-

PP-GAD-CN-1313-1



图片

扫码注册

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多