分享

5.4不等式的应用

 昵称3826483 2013-12-08

5.4不等式的应用

 

一、基础知识导学

 

1.利用均值不等式求最值:如果a1,a2R+,那么.

2.求函数定义域、值域、方程的有解性、判断函数单调性及单调区间,确定参数的取值范围等.这些问题一般转化为解不等式或不等式组,或证明不等式.

3.涉及不等式知识解决的实际应用问题,这些问题大体分为两类:一是建立不等式解不等式;二是建立函数式求最大值或最小值.

 

二、疑难知识导析

 

不等式既属数学的基础知识,又是解决数学问题的重要工具,在解决函数定义域、值域、单调性、恒成立问题、方程根的分布、参数范围的确定、曲线位置关系的讨论、解析几何、立体几何中的最值等问题中有广泛的应用,特别是近几年来,高考试题带动了一大批实际应用题问世,其特点是:

1.问题的背景是人们关心的社会热点问题,如“物价、税收、销售收入、市场信息”等,题目往往篇幅较长.

2.函数模型除了常见的“正比例函数、反比例函数、一次函数、二次函数、幂函数、指数函数、对数函数、三角函数、反三角函数”等标准形式外,又出现了以“函数

为模型的新的形式.

 

三 经典例题导讲

 

[例1]求y=的最小值.

错解 y==2

y的最小值为2.

错因:等号取不到,利用均值定理求最值时“正、定、等”这三个条件缺一不可.

正解:令t=,则t,于是y=

由于当t时,y=是递增的,故当t=2即x=0时,y取最小值.

[例2]m为何值时,方程x2+(2m+1)x+m2-3=0有两个正根.

错解:由根与系数的关系得,因此当时,原方程有两个正根.

错因:忽视了一元二次方程有实根的条件,即判别式大于等于0.

正解:由题意:

因此当时,原方程有两个正根.

[例3]若正数x,y满足,求xy的最大值.

:由于x,y为正数,则6x,5y也是正数,所以

当且仅当6x=5y时,取“=”号.

,则,即,所以的最大值为.

[例4] 已知:长方体的全面积为定值S,试问这个长方体的长、宽、高各是多少时,它的体积最大,求出这个最大值.

分析:经过审题可以看出,长方体的全面积S是定值.因此最大值一定要用S来表示.首要问题是列出函数关系式.设长方体体积为y,其长、宽、高分别为a,b,c,则y=abc.由于a+b+c不是定值,所以肯定要对函数式进行变形.可以利用平均值定理先求出y2的最大值,这样y的最大值也就可以求出来了.

解:设长方体的体积为y,长、宽、高分别是为a,b,c,则

y=abc,2ab+2bc+2ac=S.

y2=(abc)2=(ab)(bc)(ac)

当且仅当ab=bc=ac,即a=b=c时,上式取“=”号,y2有最小值

答:长方体的长、宽、高都等于时体积的最大值为.

说明:对应用问题的处理,要把实际问题转化成数学问题,列好函数关系式是求解问题的关健.

 

四、典型习题导练

 

1.某工厂要建造一个长方体无盖贮水池,其容积为4800m3,深为3m,如果池底每1m2的造价为150元,池壁每1m2的造价为120元,问怎样设计水池能使总造价最低,最低总造价是多少元?

2.证明:通过水管放水,当流速相同时,如果水管截面的周长相等,那么截面是圆的水管比截面是正方形的水管流量大.

3.在四面体P-ABC中,∠APB=∠BPC=∠CPA=90°,各棱长的和为m,求这个四面体体积的最大值.

4. 设函数f(x)=ax2+bx+c的图象与两直线y=x,y=-x,均不相

交,试证明对一切R都有.

5.青工小李需制作一批容积为V的圆锥形漏斗,欲使其用料最省,问漏斗高与漏斗底面半径应具有怎样的比例?

6.轮船每小时使用燃料费用(单位:元)和轮船速度(单位:海里/时)的立方成正比.已知某轮船的最大船速是18海里/时,当速度是10海里/时时,它的燃料费用是每小时30元,其余费用(不论速度如何)都是每小时480元,如果甲、乙两地相距1000海里,求轮船从甲地行驶到乙地,所需的总费用与船速的函数关系,并问船速为多少时,总费用最低?

 

5.5  推理与证明

 

一、基础知识导学

 

1.     推理一般包括合情推理和演绎推理.

2.     合情推理:根据已有的事实和正确的结论(包括定义、公理、定理等)、实验和实践的结果,以及个人的经验和直觉等推测某些结果的推理过程.归纳、类比是合情推理常用的思维方法.

3.     归纳推理:根据一类事物的部分对象具有某种性质,推出这类事物的所有对象都具有这种性质的推理.

4.     归纳推理的一般步骤:⑴通过观察个别情况发现某些相同性质;⑵从已知的相同性质中推出一个明确表达的一般性命题(猜想).

5.     类比推理:根据两类不同事物之间具有某些类似性,推出其中一类事物具有另一类事物类似的性质的推理.

6.     类比推理的一般步骤:⑴找出两类事物之间的相似性或一致性;⑵从一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).

7.     演绎推理:根据一般性的真命题导出特殊性命题为真的推理.

8.     直接证明的两种基本方法:分析法和综合法;间接证明的一种基本方法──反证法.

9.     分析法:从原因推导到结果的思维方法.                                                                           

10.  综合法:从结果追溯到产生这一结果的原因的思维方法. 

11.  反证法:判定非q为假,推出q为真的方法.

12.  应用反证法证明命题的一般步骤:⑴分清命题的条件和结论;⑵做出与命题结论相矛盾的假定;⑶由假定出发,应用正确的推理方法,推出矛盾的结果;⑷间接证明命题为真.

13.  数学归纳法:设{pn}是一个与自然数相关的命题集合,如果⑴证明起始命题p1成立;⑵在假设pk成立的前提上,推出pk+1也成立,那么可以断定,{pn}对一切正整数成立.

14.  数学归纳法的步骤:

    (1)证明当 (如 或2等)时,结论正确;

(2)假设 时结论正确,证明 时结论也正确.

 

二、疑难知识导析

 

1.归纳推理是根据一类事物的部分对象具有某种性质,推出这类事物的所有对象都具有这种性质的推理.

而类比推理是根据两类不同事物之间具有某些类似性,推出其中一类事物具有另一类事物类似的性质的推理.

2. 应用反证法证明命题的逻辑依据:做出与命题结论相矛盾的假定,由假定出发,应用正确的推理方法,推出矛盾的结果

3. 数学归纳法是一种证明方法,归纳推理是一种推理方法.

 

三、经典例题导讲

 

[例1] {}是正数组成的数列,其前n项和为,并且对于所有的自然数,与2的等差中项等于与2的等比中项.

(1)写出数列{}的前3项;

(2)求数列{}的通项公式(写出推证过程);

错解:由(1)猜想数列{}有通项公式=4-2.

下面用数学归纳法证明数列{}的通项公式是

=4-2.  (N).

①当=1时,因为4×1-2=2,又在(1)中已求出=2,所以上述结论成立.

②假设n=k时结论成立,即有=4-2.由题意,有

=4-2代入上式,得,解得

由题意,有

代入,化简得

解得.∴

这就是说,当n=k+1时,上述结论成立.

根据①、②,上述结论对所有的自然数n成立.

错因在于解题过程中忽视了取值的取舍. 

正解:由(1)猜想数列{an}有通项公式an=4n-2.

猜想数列{}有通项公式=4-2.

下面用数学归纳法证明数列{}的通项公式是

=4-2.  (N).

①当=1时,因为4×1-2=2,又在(1)中已求出=2,所以上述结论成立.

②假设n=k时结论成立,即有=4-2.由题意,有

=4-2代入上式,得,解得

由题意,有

代入,化简得

解得.由

这就是说,当n=k+1时,上述结论成立.

根据①、②,上述结论对所有的自然数n成立.

[例2] 用数学归纳法证明对于任意自然数

      

错解:证明:假设当N)时,等式成立,

     即

     那么当时,

      

       

        

        

        

     这就是说,当时,等式成立.

    可知等式对任意N成立.

错因在于推理不严密,没有证明当的情况.

正解:证明:(1)当时,左式,右式,所以等式成立.

     (2)假设当)时,等式成立,

     即

     那么当时,

      

        

        

        

        

     这就是说,当时,等式成立.

     由(1)、(2),可知等式对任意N成立.

[例3] 是否存在自然数,使得对任意自然数,都能被整除,若存在,求出的最大值,并证明你的结论;若不存在,说明理由.

 分析 本题是开放性题型,先求出…再归纳、猜想、证明.

      

      

    ……

    猜想, 能被36整除,用数学归纳法证明如下:

    (1)当时,,能被36整除.

    (2)假设当,(N)时,能被36整除.

    那么,当时,

                        

                        

    由归纳假设,能被36整除,

    当为自然数时,为偶数,则能被36整除.

    ∴ 能被36整除,

    这就是说当时命题成立.

    由(1)、(2)对任意都能被36整除.

    当取大于36的自然数时,不能被整除,所以36为最大.

 [例4] 设点是曲线C:与直线的交点,过点作直线的垂线交轴于,过点作直线的平行线交曲线C于,再过点作的垂线作交X轴于,如此继续下去可得到一系列的点,…,,…如图,试求的横坐标的通项公式.

 分析 本题并没有指明求通项公式的方法,可用归纳——猜想——证明的方法,也可以通过寻求的递推关系式求的通项公式.

:解法一  )联立,解得

  直线的方程为, 令,得,所以点

 直线的方程为联立,消元得),解得, 所以点).

直线的方程为

 令,得,所以点 同样可求得点,0)

      ……

  由此推测,0),即

   用数学归纳法证明

   (1)当时,由点的坐标为(,0),

    即,所以命题成立.

   (2)假设当时命题成立,

     即,0),则当时,

     由于直线的方程为

     把它与)联立,

     消去可得),

     ∴

     于是

      即点的坐标为().

      ∴ 直线的方程为

      令得,

      即点的坐标为(,0)

      ∴ 当时,命题成立.

  解法二 设点的坐标分别为(,0)、(,0),

      建立的递推关系,即

      由数列是等差数列,且,公差

      可求得),

用数学归纳法证明与自然数n有关的几何命题,由k过渡到k+1常利用几何图形来分析图形前后演变情况.

[例5] 有n个圆,其中每两个圆都相交于两点,并且每三个圆都不相交于同一点,求证:这n个圆把平面分成f(n)=n2-n+2个部分.

证明①当n=1时,即一个圆把平面分成二个部分f(1)=2

又n=1时,n2-n+2=2,∴命题成立

②假设n=k时,命题成立,即k个圆把平面分成f(k)=k2-k+2个

部分,那么设第k+1个圆记⊙O,由题意,它与k个圆中每个圆

交于两点,又无三圆交于同一点,于是它与其它k个圆相交于2k

个点.把⊙O分成2k条弧而每条弧把原区域分成2块,因此这平

面的总区域增加2k块,即f(k+1)=k2-k+2+2k=(k+1)2-(k+1)+2

即n=k+1时命题成立.

由①②可知对任何n∈N命题均成立.

说明本题如何应用归纳假设及已知条件,其关键是分析k增加“1”时,研究第k+1个圆与其它k个圆的交点个数问题.

 [例6] 已知n≥2,n∈N

②假设n=k时,原不等式成立.

由①②可知,对任何n∈N(n≥2),原不等式均成立.

 

四、典型习题导练

 

1.用数学归纳法证明等式“1+2+3+…+(+3)= (N)”

=1时,左边应为____________.

2.已知数列{ }的前n项和,则{}的前四项依次为_______,猜想=__________.

3.已知数列

证明.

4.已知不等式为大于2的整数,表示不超过的最大整数. 设数列的各项为正,且满足证明.

     5. 自然状态下的鱼类是一种可再生资源,为持续利用这一资源,需从宏观上考察其再生能

力及捕捞强度对鱼群总量的影响. 用xn表示某鱼群在第n年年初的总量,n∈N*,且x1>0.

不考虑其它因素,设在第n年内鱼群的繁殖量及捕捞量都与xn成正比,死亡量与xn2成正比,

这些比例系数依次为正常数a,b,c.

(1)求xn+1xn的关系式;

(2)猜测:当且仅当x1a,b,c满足什么条件时,每年年初鱼群的总量保持不变?

(3)设a=2,c=1,为保证对任意x1∈(0,2),都有xn>0,nN*,则捕捞强度b的

最大允许值是多少?证明你的结论.

2011-09-09  人教网

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多