分享

若数列{an}的通项公式为an=2n+5,则此数列是()A.公差为2的等差数列B.公差为5的等差数列C.首项为5的等差数列D.公差为n的等差数列

 imelee 2016-01-19
  • 等差数列的定义:

    一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做公差,用符号语言表示为an+1-an=d。

  • 等差数列的性质:

    (1)若公差d>0,则为递增等差数列;若公差d<0,则为递减等差数列;若公差d=0,则为常数列;
    (2)有穷等差数列中,与首末两端“等距离”的两项和相等,并且等于首末两项之和;
    (3)m,n∈N*,则am=an+(m-n)d;
    (4)若s,t,p,q∈N*,且s+t=p+q,则as+at=ap+aq,其中as,at,ap,aq是数列中的项,特别地,当s+t=2p时,有as+at=2ap
    (5)若数列{an},{bn}均是等差数列,则数列{man+kbn}仍为等差数列,其中m,k均为常数。
    (6)
    (7)从第二项开始起,每一项是与它相邻两项的等差中项,也是与它等距离的前后两项的等差中项,即
    (8) 仍为等差数列,公差为


     

  • 对等差数列定义的理解:

    ①如果一个数列不是从第2项起,而是从第3项或某一项起,每一项与它前一项的差是同一个常数,那么此数列不是等差数列,但可以说从第2项或某项开始是等差数列. 
    ②求公差d时,因为d是这个数列的后一项与前一项的差,故有 还有
    ③公差d∈R,当d=0时,数列为常数列(也是等差数列);当d>0时,数列为递增数列;当d<0时,数列为递减数列;
    是证明或判断一个数列是否为等差数列的依据;
    ⑤证明一个数列是等差数列,只需证明an+1-an是一个与n无关的常数即可。

    等差数列求解与证明的基本方法:

    (1)学会运用函数与方程思想解题;
    (2)抓住首项与公差是解决等差数列问题的关键;
    (3)等差数列的通项公式、前n项和公式涉及五个量:a1,d,n,an,Sn,知道其中任意三个就可以列方程组求出另外两个(俗称“知三求二’).

    • 本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
      转藏 分享 献花(0

      0条评论

      发表

      请遵守用户 评论公约

      类似文章 更多