上一篇探讨了实数收敛的概念,用无穷级数来确定一个数。很容易把它扩展到无穷的函数序列求极限的问题。在初等微积分里,这是对函数变量的每个值逐点来考察,对每个固定的变量值,这无穷序列对应着一个函数值的数列,如果所有点对应的数列都收敛,那就认为这无穷函数序列收敛,它的极限函数在每个点的函数值是相应数列的极限值。这样函数序列的极限称为逐点收敛的。这个方法被牛顿引入后,广泛地应用,它虽然可行,但在微积分进一步研究时又遇到种种麻烦,于是又附加了许多条件,如“一致连续”,“绝对可积”等等,最后弄得微积分繁杂不堪。能不能把整个函数看成一个数学空间里的一个点,把这些条件都看成空间里的性质,从一个统一的角度来研究收敛极限的问题?这便是这一篇要介绍的概念。 现代的数学建立在比实数更加抽象的集合论基础上,应用于更广泛的空间。要将定义在实数上一元函数微积分的本质说清楚,推广到多元函数,函数逼近,泛函,随机过程,乃至各种抽象数学结构的集合上,我们要了解集合元素间联系的结构,这样才可能描述变动个体的走向,空间的性质,进而谈及趋近、收敛和极限。 微积分是基于无穷逼近极限的数学。收敛描述的是变动差别越来越小,直至微不可察的数列表现。收敛极限的存在,取决于实数的完备性。所以无穷逼近过程的含义和结果,依赖于它所在数学空间的性质。传统微积分是建立在实数空间 |
|