徐老大1 / 待分类 / 临考一个月,数学如何复习最高效

0 0

   

临考一个月,数学如何复习最高效

2016-05-22  徐老大1

数学提分,请
“高考数学'


离2016年高考不到一个月的时间了,在这短短的时间里,,好的复习方法会起到事半功倍的效果.介于此,Mr.Yang整理了相关专家的一些建议,并结合自己的高考数学授课经验,向广大高三同学总结了下面的复习策略,仅供参考,希望对同学们有所帮助.

第一步 调整心态,化解不良情绪的干扰

每到这个时候很多同学总会出现些或轻或重的紧张心理现象,严重者甚至失眠,从而干扰了复习的顺利进行,因此,要尽量调整心态,用一颗平常心对待高考,所谓平常心,无非就是我易人亦易,我难人更难,只要尽力了,结果自然不会太差. 

同时身体健康很重要,要学会劳逸结合,适当的参加一些体育锻炼,[这些都是考前一个月首先要做好的.

第二步 制定适合自己的复习计划,切记跟风

按照惯例,到了最后的一个月,老师引导的数轮复习已经结束,已经到了查漏补缺的阶段,因此根据自己的实际情况,找准自己的数学学习的薄弱模块,制定好每一周,每一天的复习计划,踏踏实实的一天一天的去执行,既是最高效的复习方法,也是最能平衡心态的方法,切忌跟风,看着别人复习什么,自己就复习什么.

第三步 回归教材,注重基础

高考数学考试大纲中明确提出高考注重考查基本概念,基本能力,基本方法,用最为宝贵的时间去复习这些最为重要的东西是最好的策略,数学中的基本概念,基本能力,基本方法都在课本上.因此,在教师的指导下,对照考纲,重新温习概念,公式,定理等,在教材重点,高考热点,高频考点上着重加强,并针对知识盲点及时查缺补漏,梳理常见的解题方法,就显得非常必要.

第四步 看做过的模拟题 真题 错题

将所做过的模拟题真题重温一次,对每一道题进行逐一分析.对每一个同学而言,有的知识点可能是百分之百掌握的,有的可能模棱两可的,也有可能是完全不会的.很多同学往往容易忽视自己以为百分之百掌握的试题,而格外重视自己完全不会的知识.殊不知重视自己不会的东西非常重要,但彻底理解,巩固自己以为掌握的东西也非常重要.自认为掌握东西,每重新复习一遍,就会有不同的发现,在高考的时候才能确保在这些知识点上不失分,模棱两可的部分,要抓紧时间分析这部分知识的基本概念,基本定理,解题思路,之所以有所了解,但又不够熟练,是因为对这些知识掌握的不透,所以要对这部分知识进行重新梳理,进行训练,争取高考时在这部分多拿分,而完全不会的部分,要因人而异,基础好的学生还有机会向老师,同学请教.而基础差的学生建议放弃.这样清楚哪些题目自己该掌握,哪些该撇开,这样就可以削减复习任务量,少发生一些心理焦虑,从而提高学习效率

第五步 保持每天适量的练习

熟能生巧的道理大家都懂,三天不练习就会手生.因此每天保持适量的练习是非常必要的.要注意的是练习时题目的难度要适中,建议练习历年的高考真题.通过练习,达到巩固基本知识,把握基本方法,熟练基本技能,训练解题速度,提高解题准确率,基础好的考生应多解综合型题,基础比较薄弱的考生还应以复习基础题为主.

复习策略就说这些,下面Mr.Yang讲一些考试中的应试技巧和各类题的解题思路,大家可以检查一下,看看自己哪一部分还有问题,可后台微Mr.Yang.在不忙的情况下都会快速回复你们;对于有同学要求总结高中数学中的公式,Mr.Yang这几天也在准备中,争取尽快更新.

应试技巧与各类题的解题思路

一 选择题

选择题考查基础知识,基本技能,侧重于解题的严谨性和快捷性,以'小''巧'著称.解选择题只要结果,不看过程,更能充分体现学生灵活应用知识的能力.同学们要充分利用题干和选项提供的信息作出判断,先定性后定量,先特殊后推理,先间接后直接,先排除后求解,一定要小题巧解,避免小题大做.

做选择题时注意各种方法的运用,比较简单的自己会的题正常做就可以了,遇到比较复杂的题时,看看能否用做选择题的技巧进行求解(主要有排除法、特殊值法、选项代入验证法、特例求解法、数形结合法、逻辑推理验证法等),一般可以综合运用各种方法,达到快速做出选择的效果.

二 填空题

对于填空题,比较简单的会的就正常做,复杂的题如果答案是一个确定的值时,看能否用特殊值代入法以及特例求解法.选择填空题的答题时间要自己掌握好,遇到不会的先放下往后做,我们的目标是把卷子上所有会的题都答上、都答对,审题要仔细(一个字一个字读题),计算要准确(一步一步计算),千万不能粗心大意.

三 解答题

1
三角函数题


第一步一般都需将三角函数化简成标准形式y=Asin(wx+&)的形式,注意二倍角的降幂作用以及辅助角(合一)公式,周期公式,对称轴,对称中心,单调区间,最大值和最小值都是用整体法求解.求最值时通过自变量的范围推到里面整体t=(wx+&)的范围,然后可以直接画y=sint的图像,避免画平移的图像.这部分题还有一种就是解三角形的问题,运用正弦定理、余弦定理、面积公式.通常有两个方向,即角化成边和边化成角,得根据具体问题具体分析哪个方便一些,遇到复杂的题就把未知量列成未知数,根据定理列方程组,然后解方程组即可.

2
数列题

数列题,注意等差、等比数列通项公式、前n项和公式;证明数列是等差或等比直接用定义法(后项减前项是常数为等差;后项比前项是常数为等比),求数列通项公式,如为等差或等比直接代公式即可,其它的一般注意类型采用不同的方法(已知Snan,已知Snan关系求an(前两种都是利用an=SnSn1,注意讨论n=1;n>1),累加法,累乘法,构造法(所求数列本身不是等差或等比,需要将所求数列适当变形构造成新数列,通过构造一个新数列使其为等差或等比,便可求其通项,再间接求出所求数列通项);数列的求和第一步要注意通项公式的形式,然后选择合适的方法(直接法,分组求和法,裂项相消法,错位相减法,倒序相加法等)进行求解(通项公式为分式一般求和用裂项求和法;通项公式为一个等差和一个等比数列相乘的形式用错位相减法,这些前面数列都有讲过).如有其它问题,注意放缩法证明,数列可以看成一个以n为自变量的函数,注意函数思想的运用.

3
立体几何题

证明题注意各种证明类型的方法(判定定理,性质定理),注意引辅助线,一般都是对角线,中点,成比例的点,等腰等边三角形中点等等,理科其实证明不出来直接用向量法也是可以的.计算题主要是体积,注意将字母换位(等体积法);线面距离用等体积法.理科还有求二面角,线面角等,用建立空间坐标系的方法(向量法)比较简单,注意各个点的坐标的计算,不要算错.

小技巧:空间几何证明过程中有一步实在想不出,就把没用过的条件直接写上,然后得出想要得到的那个结论即可.如果第一题真心不会做直接写结论成立,则第二题可以直接用这个结论,用几何法的同学建议先随便建立个空间直角坐标系,做错了还有2分可以得.立体几何中第二问叫你求正余弦值之类的问题,一般都用向量法,如果求角度则几何法简单.

4
概率与统计题

概率与统计题主要有频率分布直方图,注意纵坐标(频率/组距).求概率的问题.文科列举,然后数数,别数错,数少了,概率=满足条件的个数/所有可能的个数;理科用排列组合算数.独立性检验根据公式算K方值,细心计算别出错,会查表,用1减查完的概率.回归分析,根据数据代入公式(公式中各项的意义)即可求出回归直线方程,注意样本中心(x和y的平均数)满足回归直线方程.理科还有随机变量分布列问题,注意列表时把可能取到的所有值都列出,然后分别算概率,最后检查所有概率和是否是1,不是1说明你概率算错或者随机变量少列了.

5
圆锥曲线题

圆锥曲线题,第一问大多是求曲线方程,注意方法(定义法,待定系数法,直接求轨迹法,反求法,参数方程法等),一定检查下第一问算的数对不,要不如果算错了第二问做出来了也白算了.

第二问有直线与圆锥曲线相交时,记住'联立完事用联立',第一步联立,根据韦达定理得出两根之和,两根之积,因一般都是交于两点,注意验证判别式大于零,设直线时注意讨论斜率是否存在.第二步也是最关键的就是用联立,关键是怎么用联立,即如何将题里的条件转化成你刚才联立完的x1+x2x1x2,然后将结果代入即可.

弦长问题:代入弦长公式;

定比分点问题:根据比例关系建立三点坐标之间的一个关系式(横坐标或纵坐标),再根据根与系数的关系建立圆锥曲线上的两点坐标的两个关系式,从这三个关系式入手解决.

点对称问题:利用两点关于直线对称的两个条件,即这两点的连线与对称轴垂直和这两点的中点在对称轴上.

定点问题:直线y=kx+b过定点即找出k与b的关系,eg:b=5k+7,然后将b代入到直线方程y=kx+5k+7=k(x+5)+7即可找出定点(-5,7).

定值问题:基本思想是函数思想,将要证明或要求解的量表示为某个合适变量(斜率,截距或坐标)的函数,通过适当化简,消去变量即得定值.

小技巧:圆锥曲线中最后一题往往联立起来很复杂导致k算不出,这时你可以先联立,后算判别式,用一下韦达定理,列出题目要求解的表达式,最后用特殊值法强行算出k,剩下的问题就要看你的时间和个人能力了.

6
导数题


第一步别忘了先看下定义域,一般都得求导,求单调区间时注意与定义域取交集.看看题型.将题型转化一下.转化到你学过的内容(利用导数判断单调性,注意含参数时要利用分类讨论思想,一般求导完通分完分子是二次函数的比较多,讨论开口a=0a<>a>0和后两种情况下判别式大于或者小于等于零),求极值(根据单调区间列表或画图像简图,注意导函数和原函数的区别),求最值,注意所有的极值点与两端点值比较,典型的有恒成立问题,存在问题,注意与恒成立问题的区别,恒成立是所有的都需满足,存在是只需满足一个即可,不管是什么都要求函数的最大值或最小值,注意方法以及比较定义域端点值,注意函数图象(数形结合思想:求方程的根或解,曲线的交点个数)的运用.证明有关的问题可以利用证明的各种方法(综合法,分析法,反证法,理科的数学归纳法).多问的时候注意后面的问题一般需要用到前面小问的结论.抽象的证明问题别光用眼睛在那看,得设出里面的未知量,通过设而不求思想证明问题,

7
选修部分


这部分我直说一下参数方程与极坐标部分,各种曲线的参数方程标准形式要记准,里面谁是参数,各个量的意义以及参数本身的几何意义定要清楚,一般都是先转化为直角坐标,再转化成直角坐标系中的问题,有的题要用到参数方程里参数的几何意义来解题.eg:直线参数方程中的t,表示定点P到直线上任意一点的有向线段,注意直线参数方程中,只有是标准的参数方程才能用t的几何意义,弦长|AB|=|t1t2|,|PA||PB|=|t1t2|,注意P点坐标是参数方程里前面的(a,b),只有这样联立后的参数t才表示PA,PB.而对于极坐标可先化成直角坐标再解题,这样就是你熟悉的情景,就会简单多了.

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。如发现有害或侵权内容,请点击这里 或 拨打24小时举报电话:4000070609 与我们联系。

    猜你喜欢

    0条评论

    发表

    请遵守用户 评论公约

    类似文章
    喜欢该文的人也喜欢 更多