分享

【科研进展】SWI对星形细胞瘤分级及与单发转移瘤鉴别诊断的价值

 阿尔梅 2016-07-28





来源:磁共振成像传媒

作者:王微微, 牛田力, 苗延巍, 等. SWI对星形细胞瘤分级及与单发转移瘤鉴别诊断的价值. 磁共振成像, 2015, 6(4):246-252.

在肿瘤微环境的影响下,肿瘤血管内皮细胞动态地适应微环境的变化,在形态、功能、蛋白表达及遗传学方面均不同于正常血管[1]MRI是观察、监测肿瘤血管形态学变化的重要手段,但是常规MR技术,如T1WI增强、MRA等,并不能准确地反映肿瘤的组织病理学信息,尤其是对瘤内血管结构和出血的评估尚存在不足。磁敏感加权成像(susceptibility weighted imaging, SWI)对肿瘤微血管和出血产物高度敏感,因此,SWI可应用于肿瘤血管发生的评价[2-5]。本研究应用SWI技术分析不同病理级别星形细胞瘤及单发转移瘤瘤内的SWI表现,探讨SWI在星形细胞瘤分级及与单发转移瘤鉴别中的价值,以期获得评价脑肿瘤血管异质性的新方法和肿瘤鉴别诊断的新指标。

1 材料和方法

1.1 临床资料

本研究为前瞻性临床研究,得到医院医学伦理委员会批准,并获得患者的知情同意。对42例来我院就诊的怀疑脑肿瘤的患者行MRI检查,其中男31例,女11例,年龄1469岁,平均(43.19±11.66)岁。所有病例经手术、病理证实,包括星形细胞瘤28(WHO Ⅰ级3例、Ⅱ级8例、Ⅲ级9例、Ⅳ级8);转移瘤14(肺癌7例,乳腺癌1例,其他6例未明确肿瘤原发灶)。主要临床症状表现为头痛、呕吐、癫痫发作和局灶性神经功能缺失。

1.2 MRI设备与检查方法

应用美国GE Signa HDxt1.5 T MR扫描仪,患者仰卧位,采用标准头线圈。扫描序列包括:矢状位FSE T1WI、横断位T2WI、横断位FSE T1WI和横断位T1WI增强扫描、横断位SWI扫描。具体扫描参数见表1

1.3 MRI数据处理与分析

1.3.1 SWI图像后处理

扫描后SWI的原始数据传至ADW4.5工作站,经Functool软件处理得到滤过后相位图像(correctedphase image, CPI)SWI最小密度投影图像(minimumintensity projection, SWIMinIP)SWIMinIP层厚2.0 mm

1.3.2 肿瘤内成分的界定

结合T1WIT2WIT1增强以及CPI图进行综合分析,界定肿瘤病灶的实质区及周围水肿区、坏死或囊变区、血管及出血灶、钙化灶。界定标准具体如下:肿瘤轮廓内T1WI低信号、T2WI稍高或高信号、增强后有强化的部分是肿瘤实质区;肿瘤轮廓以外,T1WI低信号、T2WI高信号、增强后无强化区是瘤周水肿区;坏死(囊变)区是肿瘤轮廓内T1WI低信号、T2WI高信号、增强后无强化的区域。肿瘤内钙化灶、出血灶、血管结构均可能表现为T1WI高或低、T2WI低信号,需要通过CPI图和SWIMinIP图加以鉴别。钙化灶在CPI图呈高信号,出血灶和血管结构为低信号。参照文献[6],将在SWIMinIP图上看到的肿瘤内部聚集或不聚集的细线状或点状低信号结构定义为肿瘤内磁敏感信号灶(intertumoral susceptibility signalintensity, ITSS),计数每个肿瘤内部所有层面的ITSS数目(1)。将图像上相连的低信号计数为1ITSS信号,不相连的低信号分别计数。所有测量内容由两位有经验的放射科医师通过双盲法观察、测量得到,若对肿瘤内成分辨认存在异议,则通过协商来进行确定。


1.4 统计学方法

所有数据采用社会科学统计软件包SPSS19.0版进行统计分析。星形细胞瘤不同级别之间、星形细胞瘤与转移瘤之间的ITSS的差异用Wilcoxon秩和检验进行分析。应用Spearman相关性分析分析星形细胞瘤级别与ITSS间关系。对于肿瘤之间有统计学差异的参数,采用ROC曲线分析其诊断敏感度、特异度。以P0.05为差异有统计学意义。

2 结果

2.1 不同级别星形细胞瘤之间的ITSS比较

I级星形细胞瘤瘤内实质的ITSS数目均值为(3.00±2.65),Ⅱ级为(4.12±0.64),Ⅲ级为(18.11±2.15),Ⅳ级为(18.75±2.48)。Ⅱ级星形细胞瘤与Ⅲ级星形细胞瘤之间ITSS数目差异显著(H=7.835P0.01);Ⅲ级与Ⅳ级之间ITSS数目无显著差异(H=0.021P=0.885)。图2为不同级别胶质瘤内部ITSS的比较,低级别(Ⅰ级与Ⅱ级)星形细胞瘤的ITSS数目明显小于高级别(Ⅲ级与Ⅳ级)星形细胞瘤(H=13.156P0.01)。相比较于低级别星形细胞瘤瘤内小点、细线状ITSS,高级别星形细胞瘤瘤内的ITSS多为粗大的点、条状结构,如图3、图4所示。星形细胞瘤级别与ITSS呈中度正相关(r=0.746P=0.000)ROC结果显示,以7.5为阈值鉴别高、低级别星形细胞瘤,敏感度为88.2%,特异度为81.8%ROC曲线下面积最大(AUC)0.912;以6.0为阈值鉴别Ⅱ级与Ⅲ级星形细胞瘤,敏感度为100%,特异度为87.5%AUC最大,为0.903。图5为应用ITSS计数鉴别不同级别星形细胞瘤的ROC曲线分析结果。



2.2 星形细胞瘤和转移瘤之间的ITSS比较

高级别星形细胞瘤瘤内实质的ITSS 均值(18.41±1.58)明显高于转移瘤(6.14±1.56P=0.001);而低级别星形细胞瘤(3.81±1.45)与转移瘤(6.14±1.56P0.05)内实质的ITSS均值无明显差异。图6为高级别星形细胞瘤与转移瘤ITSS差异比较,相比较于高级别星形细胞瘤瘤内粗大的点、条状的ITSS,转移瘤内ITSS多表现为颗粒状、细点状。应用ROC曲线分析结果显示,以6.5为阈值鉴别高级别星形细胞瘤与转移瘤,敏感度为94.1%,特异度为71.4%ROC曲线下面积最大,AUC=0.861。图7为应用ITSS计数鉴别高级别星形细胞瘤和转移瘤的ROC曲线分析结果。图8、图9分别显示了胶质母细胞瘤和转移瘤实质区的ITSS



3 讨论

肿瘤的存活、生长离不开肿瘤血管,而肿瘤血管在形态、功能等多个方面都不同于正常血管,即存在肿瘤血管异质性。病理学上以肿瘤血管异常增生、血管内皮不完整以及继发出血为特征。肿瘤的原发灶与转移灶、同一组织类型的不同原发瘤体之间以及同一器官内的不同转移灶之间均可能存在血管异质性[7]MRI增强扫描能够较为清晰地显示强化的脑内血管,可以对脑肿瘤的供血丰富程度和血脑屏障完整性进行定性评价,但是难以量化,强化与否及程度与肿瘤级别经常不一致。此外,由于病变处血管内皮和基底膜不完整,导致对比剂的渗漏,使得肿瘤部分区域呈弥漫性强化而掩盖了肿瘤内部强化的小血管,从而限制了增强T1WI序列对肿瘤内部血管的显示[8]SWI利用不同组织间磁敏感性差异成像,能清晰地显示脑肿瘤内部静脉血管构成、出血、钙化等,可应用于肿瘤血管发生的评价。超高场MRI研究显示,胶质瘤内迂曲低信号与组织病理学检查中的微血管尺寸和密度一致,这种低信号可以作为肿瘤微血管增生的影像学标志[9]。本研究结果显示,SWI可以对不同级别星形细胞瘤、转移瘤瘤内血管及出血进行量化,在星形细胞瘤分级及与单发转移瘤鉴别中具有重要的应用价值。

3.1 不同级别星形细胞瘤的ITSS数量差异

本研究显示Ⅱ级星形细胞瘤与Ⅲ级星形细胞瘤之间ITSS数目差异显著,低级别(Ⅰ级与Ⅱ级)星形细胞瘤的ITSS数目明显小于高级别星形细胞瘤。星形细胞瘤级别与ITSS呈中度正相关,这与以往类似研究结果相符[10-13]Park[6]研究显示胶质母细胞瘤瘤内磁敏感信号增高,与低级别胶质瘤比较具有显著差异,且特异度高达100%。脑肿瘤组织学分类认为,星形细胞瘤分级与肿瘤血管的增殖活性密切相关[114],血管生成活性可以反映星形细胞瘤的生物侵袭性和恶性程度,星形细胞瘤血管密度随肿瘤级别的升高而增高。SWI可通过显示肿瘤内富血供状态来间接判断肿瘤的活性高低。肿瘤血管内皮增生或微血管表现为瘤内大小不等的异常血管[15]SWI图像上显示为肿瘤内部聚集或不聚集的细线状或点状低信号结构,也就是ITSS。随肿瘤级别升高,病理性血管增多,肿瘤内出血也增多,因此,高级别星形细胞瘤内ITSS数目要高于低级别星形细胞瘤,星形细胞瘤级别与ITSS呈正相关。ITSS可间接判断肿瘤的活性高低,有助于星形细胞瘤的分级。本研究发现不同级别星形细胞瘤内的ITSS形态也不同,相比较于低级别星形细胞瘤瘤内小点、细线状ITSS,高级别星形细胞瘤瘤内的ITSS多为粗大的点、条状结构。这与不同级别星形细胞瘤内血管结构不同有关。组织学研究发现不同级别星形细胞瘤瘤内血管结构存在差异[716]。低级别星形细胞瘤瘤内血管多是由原正常供血血管发出、走行清晰的小分支,血管内皮屏障比较完整。某些低级别星形细胞瘤即使体积较大,甚至呈弥漫性分布,其内杂生血管还是较少的。星形细胞瘤从低级别进展到高级别的过程中,瘤内微血管从以窦状扩张为主,逐渐转变成芽状为主,部分会呈肾小球样血管[17],明显扩张,血管内皮屏障明显破坏,伴有明显出血。本研究ROC曲线结果显示,ITSS 对星形细胞瘤分级诊断具有重要的应用价值,尤其对Ⅱ、Ⅲ级星形细胞瘤的鉴别。

3.2 星形细胞瘤和转移瘤之间的ITSS比较

星形细胞瘤和转移瘤是脑内最常见的原发性和继发性肿瘤,二者治疗策略不同,因此鉴别诊断对于指导临床治疗具有重要意义。常规MRI序列对于高级别星形细胞瘤和表现不典型的单发转移瘤的鉴别存在一定的困难。本研究发现,高级别星形细胞瘤ITSS均值明显高于转移瘤,并有较好的诊断效能。二者实质内ITSS不仅存在数量上差异,在形态上也存在差异。相比较于高级别星形细胞瘤瘤内粗大的点、条状的ITSS,转移瘤内ITSS多表现为颗粒状、细点状。低级别星形细胞瘤与转移瘤内实质的ITSS均值无明显差异,然而在常规MRI图像上二者鉴别困难不大,因此SWI的鉴别价值主要体现在高级别星形细胞瘤和表现不典型的单发转移瘤的鉴别中。本研究结果与Kim[18]研究相符。Kim等采用ITSS分级系统对64例脑内单发强化病灶行常规MRISWI,并进行半定量分析,结果发现ITSS见于100%的胶质母细胞瘤,11%的脑转移瘤;常规MRI诊断准确度是67%,而联合SWI后诊断准确度提高到78%。高级别星形细胞瘤和转移瘤实质ITSS差异可能依赖于病理学基础[19]。原发恶性胶质瘤常包含有明显的网状分布的血管,且血管壁薄,血管内皮细胞常见减生现象,血管壁不完整(因血管周围组织中有含铁血黄素沉积),肿瘤内局部坏死会使这些血管受牵张而破裂出血。转移瘤血管具有不规则、窦状薄壁且腔大的特点,肿瘤边缘血管存在锐利的分叉,大腔的肿瘤血管与受压的白质血管直接交通,所以转移瘤出血始于肿瘤边缘或受压的脑组织中,该处新的浸润正在进行,瘤细胞生长最活跃,肿瘤不断压迫正常的脑组织和血管,以致后者水肿、坏死及软化,从而使血管失去支撑被拉伸、易于破裂出血,出血破坏周围脑组织又激发新的出血。有研究发现,脑转移瘤中CD44V6呈现高表达,导致肿瘤细胞快速增长[17],而恶性胶质瘤高表达的是血管内皮生长因子(VEGF)Ki67[20]VEGF在诱发血管生成过程中起主要作用,由此推测,转移瘤瘤内血管数与高级别星形细胞瘤比较相对较少[21]。引起二者ITSS差异的确切病理组织学原因还不十分清楚,尚有待于进一步研究。

3.3 局限性

本研究为前瞻性研究,病例数相对少,有待于进一步增加样本量。另外,ITSS计数的量化方法属于半定量方法,也存在一定主观性,需要进一步寻找更客观的指标,如测量ITSS的面积或体积比值来评价瘤内血管异质性。

参考文献 [References]

[1] Hillen F, Griffioen AW. Tumour vascularization:sproutingangiogenesis and beyond. Cancer Metastasis Rev, 2007, 26(3-4): 489-502.

[2] Zhang W, Zhao J, Guo D, et al. Application of susceptibilityweighted imaging in revealing intratumoral blood products and grading gliomas.JRadiol, 2010, 91(4): 485-490.

[3] Liu CM, Li CT. Susceptibility-weighted imaging using inbrain tumor. J Med Imaging, 2013, 23(8): 1311-1313.

刘传梅, 李传亭. 磁敏感加权成像在脑肿瘤中的应用进展. 医学影像学杂志,2013, 23(8): 1311-1313.

[4] Chen WJ, Lin Q, Chen JY, et al. High ResolutionSusceptibilityweighted Imaging in the Study of the Micrangium of theIntracrarnial Tumors. Chin Comput Med Imag, 2012, 18(4): 294-297.

陈文锦, 林祺,陈金银, . 高分辨率磁敏感加权像对颅内肿瘤微血管的研究.中国医学计算机成像杂志, 2012, 18(4): 294-297.

[5] Lin Q, Zhang Q, Chen DP, et al. Correlation investigatebetween grade of intratumoral susceptibility signals and relative quantitativeof 1H-MRS in patients with brain astrocytic tumours. Chin J Magn Reson Imaging,2012, 3(3): 174-178.

林祺, 张强,陈东平, . 脑星形细胞瘤磁敏感效应级别与1H-MR波谱相对定量的相关性探讨. 磁共振成像, 2012, 3(3): 174-178.

[6] Park SM, Kim HS, Jahng GH, et al. Combination ofhigh-resolution susceptibility-weighted imaging and the apparent diffusioncoefficient: added value to brain tumour imaging and clinical feasibility ofnoncontrast MRI at 3 T. Br J Radiol, 2010, 83(990): 466-475.

[7] Pinker K, Noebauer-Huhmann IM, Stavrou I, et al.High-resolution contrast-enhanced, susceptibility-weighted MR imaging at 3T inpatients with brain tumors: correlation with positron-emission tomography andhistopathologic findings. AJNR, 2007, 28(7): 1280-1286.

[8] Shen JL, Li KC, Du XY, et al. Diagnostic value ofsusceptibility weighted imaging in grading diffusely infiltrating astrocytomas.Chin J Contemp Neurol Neurosurg, 2012, 12(6): 675-681.

沈俊林, 李坤成, 杜祥颖, . 磁敏感加权成像技术在脑弥漫性星形细胞瘤分级中的诊断价值. 中国现代神经疾病杂志,2012, 12(6):675-681.

[9] G.A.Christoforidis, M.Yang, A.Abduljalil, et al. Tumoralpseudoblushidentified within gliomas athigh-spatialresolution ultrahigh-field-strength gradient-echo MR imagingcorresponds to microvascularity at stereotactic biopsy. Radiology, 2012,264(1): 210-217.

[10] Han T, Zhang YT, Liu L, et al. Correlation of the indicesof susceptibility weighted imaging and perfusion imaging with the expression ofmicrovessel density and vascular endothelial growth factor in astrocytic tumor.Zhonghua Fang She Xue Za Zhi, 2013, 47(12): 1086-1091.

韩彤, 张云亭, 刘力, . 星形细胞肿瘤磁敏感加权成像和灌注成像测量指标与肿瘤内微血管密度和血管内皮细胞生长因子的相关性研究. 中华放射学杂志,2013, 47(12): 1086-1091.

[11] Li C, Ai B, Li Y, et al. Susceptibility-weighted imaging ingrading brain astrocytomas. Eur J Radiol, 2010, 75(1): e81-85.

[12] Zhang H, Tan Y, Wang XC, et al. Susceptibility-weightedimaging:the value in cerebral astrocytomas grading. Neurol India, 2013, 61(4): 389-395.

[13] Shen JL, Zhang H, Liu QW, et al. Initial study ofsusceptibility weighted imaging in brain masses. Chin J Magn Reson Imaging,2010, 1(1): 29-35.

沈俊林, 张辉,刘起旺, . 磁敏感加权成像对脑肿瘤诊断价值初探. 磁共振成像, 2010, 1(1): 29-35.

[14] Bat DJ, Parisi JE, Kleinschmidt-DeMasters BK, et al.Surgical neuropathology update a review of changes introduced by the WHO classificationof tumours of the central nervous system,4thedition. Arch Pathol Lab Med, 2008,132(6): 993-1007.

[15] Han T, Cui SM. Susceptibility weighted image and itsapplication in evaluation of brain tumors and classification of gliomas.International Journal of Medical Radiology, 2011, 34(1): 15-20.

韩彤, 崔世民. SWI原理及其在脑肿瘤评估和胶质瘤分级中的应用.国际医学放射学杂志,2011, 34(1): 15-20.

[16] Hori M, Mori H, Aoki S, et al. Three-dimensionalsusceptibility susceptibility weighted imaging at 3 T using variousimage analysis methods in the estimation of grading intracranial gliomas. MagnReson Imaging, 2010, 28(4): 594-598.

[17] Cha S,Knopp EA, Johnson G, et al. Intracranial mass lesions:dynamic contrast-enhancedsusceptibility-weighted echo-planar perfusion MR imaging. Radiology, 2002,223(1): 11-29.

[18] Kim HS,Jahng GH, Ryu CW, et al. Added value and diagnostic performance of intratumoralsusceptibility signals in the differential diagnosis of solitary enhancingbrain lesions:preliminary study. AJNR Am J Neurorad, 2009, 30(8): 1574-1579.

[19] Wei SP,Zhao JZ. Mechanism of brain tumor apoplexy. Foreign Medical Sciences(Section OnNeurology & Neurosurgery), 1999, 26(4): 199-201.

魏社鹏, 赵继中. 脑肿瘤卒中的发生机制. 国外医学神经病学神经外科学分册, 1999, 26(4): 199-201.

[20] Arii S,Mori A, Uchida S, et al. Implication of vascular endothelial growth factor inthe development and metastasis of human cancers. Hum Cell, 1999, 12(1): 25-30.

[21] Axelson H,Fredlund E, Ovenberger M, et al. Hypoxia-induced dedifferentiation of tumorcells-A mechanism behind heterogeneity and aggressiveness of solid tumors.Semin Cell Dev Biol, 2005, 16(4-5): 554-563.

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多