分享

狭义相对论,四维时空的奥秘!

 逸心茶舍 2017-05-11
爱因斯坦相对论分为广义相对论和狭义相对论,在之前的文章中小编已经给大家介绍过了广义相对论,那么本篇本章主要给大家介绍狭义相对论。狭义相对论其实是对牛顿时空理论的改正,“狭义”说明它只对特殊的条件成立,也就是惯性参考系,在微观物体高速运动的时候才能发现狭义相对论的神奇之处。下面,小编就给大家具体介绍下狭义相对论吧。

狭义相对论简介

\

1、狭义相对论介绍

狭义相对论是爱因斯坦在1905年发表的题为《论动体的电动力学》一文中提出的区别于牛顿时空观的新的平直时空理论。“狭义”(或“特殊”)表示它只适用于惯性参考系。只有在观察高速运动现象时才能觉察出这个理论同经典物理学对同一物理现象的预言之间的差别。

2、狭义相对论的产生背景

狭义相对论是在光学和电动力学实验同经典物理学理论相矛盾的激励下产生的。1905年以前已经发现一些电磁现象与经典物理概念相抵触,它们是:

①迈克耳孙-莫雷实验没有观测到地球相对于以太的运动,同经典物理学理论的“绝对时空”和“以太”概念产生矛盾。 ②运动物体的电磁感应现象表现出相对性——是磁体运动还是导体运动其效果一样。
③电子的电荷与惯性质量之比(荷质比)随电子运动速度的增加而增大。

此外,电磁规律(麦克斯韦方程组)在伽利略变换下不是不变的,即是说电磁定律不满足牛顿力学中的伽利略相对性原理。修改和发展牛顿理论使之能够圆满解释上述新现象成为19世纪末、20世纪初的当务之急。

\

3、狭义相对论的历史

以洛伦兹为代表的许多物理学家在牛顿力学的框架内通过引入各种假设来对牛顿理论进行修补,最后引导出了许多新的与实验结果相符合的方程式,如时间变慢和长度收缩假说、质速关系式和质能关系式,甚至得到了洛伦兹变换。所有这些公式中全都包含了真空光速。如果只为解释已有的新现象,上述这些公式已经足够,但这些公式分别来自不同的假说或不同的模型而不是共同出自同一个物理理论。

而且,使用牛顿绝对时空观来对洛伦兹变换以及所含的真空光速进行解释时却遇到了概念上的困难。这种不协调的状况预示着旧的物理观念即将向新的物理观念的转变。爱因斯坦洞察到解决这种不协调状况的关键是同时性的定义,同时性概念没有绝对的意义。而牛顿时空理论(或伽利略变换)中的时间没有办法在现实世界中实现。为使用光信号对钟,爱因斯坦假定了单向光速是个常数且与光源的运动无关(光速不变原理)。此外,他又把伽利略相对性原理直接推广为狭义相对性原理,由此得到了洛伦兹变换,继而建立了狭义相对论。

\

狭义相对论的通俗理解

狭义相对论是建立在四维时空观上的一个理论,因此要弄清相对论的内容,要先对相对论的时空观有个大体了解。在数学上有各种多维空间,但目前为止我们认识的物理世界只是四维,即三维空间加一维时间。现代微观物理学提到的高维空间是另一层意思,只有数学意义,在此不做讨论。 

四维时空是构成真实世界的最低维度,我们的世界恰好是四维,至于高维真实空间,至少现在我们还无法感知。一把尺子在三维空间里(不含时间)转动,其长度不变,但旋转它时,它的各坐标值均发生了变化,且坐标之间是有联系的。四维时空的意义就是时间是第四维坐标,它与空间坐标是有联系的,也就是说时空是统一的,不可分割的整体,它们是一种”此消彼长”的关系。 

四维时空不仅限于此,由质能关系知,质量和能量实际是一回事,质量(或能量)并不是独立的,而是与运动状态相关的,比如速度越大,质量越大。在四维时空里,质量(或能量)实际是四维动量的第四维分量,动量是描述物质运动的量,因此质量与运动状态有关就是理所当然的了。在四维时空里,动量和能量实现了统一,称为能量动量四矢。另外在四维时空里还定义了四维速度四维加速度,四维力,电磁场方程组的四维形式等。值得一提的是,电磁场方程组的四维形式更加完美,完全统一了电和磁,电场和磁场用一个统一的电磁场张量来描述。四维时空的物理定律比三维定律要完美的多,这说明我们的世界的确是四维的。可以说至少它比牛顿力学要完美的多。至少由它的完美性,我们不能对它妄加怀疑。 

\

相对论中,时间与空间构成了一个不可分割的整体——四维时空,能量与动量也构成了一个不可分割的整体——四维动量。这说明自然界一些看似毫不相干的量之间可能存在深刻的联系。在今后论及广义相对论时我们还会看到,时空与能量动量四矢之间也存在着深刻的联系。 

物质在相互作用中作永恒的运动,没有不运动的物质,也没有无物质的运动由于物质是在相互联系,相互作用中运动的,因此,必须在物质的相互关系中描述运动,而不可能孤立的描述运动。也就是说,运动必须有一个参考物,这个参考物就是参考系。 

伽利略曾经指出,运动的船与静止的船上的运动不可区分,也就是说,当你在封闭的船舱里,与外界完全隔绝,那么即使你拥有最发达的头脑,最先进的仪器,也无从感知你的船是匀速运动,还是静止。更无从感知速度的大小,因为没有参考。比如,我们不知道我们整个宇宙的整体运动状态,因为宇宙是封闭的。爱因斯坦将其引用,作为狭义相对论的第一个基本原理:狭义相对性原理。其内容是:惯性系之间完全等价,不可区分。 

\

著名的麦克尔逊--莫雷实验彻底否定了光的以太学说,得出了光与参考系无关的结论。也就是说,无论你站在地上,还是站在飞奔的火车上,测得的光速都是一样的。这就是狭义相对论的第二个基本原理,光速不变原理。 

由这两条基本原理可以直接推导出相对论的坐标变换式,速度变换式等所有的狭义相对论内容。比如速度变幻,与传统的法则相矛盾,但实践证明是正确的,比如一辆火车速度是10m/s,一个人在车上相对车的速度也是10m/s,地面上的人看到车上的人的速度不是20m/s,而是(20-10^(-15))m/s左右。在通常情况下,这种相对论效应完全可以忽略,但在接近光速时,这种效应明显增大,比如,火车速度是0。99倍光速,人的速度也是0。99倍光速,那么地面观测者的结论不是1。98倍光速,而是0。999949倍光速。车上的人看到后面的射来的光也没有变慢,对他来说也是光速。因此,从这个意义上说,光速是不可超越的,因为无论在那个参考系,光速都是不变的。速度变换已经被粒子物理学的无数实验证明,是无可挑剔的。正因为光的这一独特性质,因此被选为四维时空的唯一标尺。

狭义相对论的基本假设

\

这个理论的出发点是两条基本假设:狭义相对性原理和光速不变原理。理论的核心方程式是洛伦兹变换(见惯性系坐标变换)。狭义相对论预言了牛顿经典物理学所没有的一些新效应(相对论效应),如时间膨胀、长度收缩、横向多普勒效应、质速关系、质能关系等,它们已经获得大量实验的直接证明。

1、狭义相对性原理

一切物理定律(除引力外的力学定律、电磁学定律以及其他相互作用的动力学定律)在所有惯性系中均有效;或者说,一切物理定律(除引力外)的方程式在洛伦兹变换下保持形式不变。不同时间进行的实验给出了同样的物理定律这正是相对性原理的实验基础。

2、光速不变原理

光在真空中总是以确定的速度c传播,速度的大小同光源的运动状态无关。在真空中的各个方向上,光信号传播速度(即单向光速)的大小均相同(即光速各向同性);光速同光源的运动状态和观察者所处的惯性系无关。这个原理同经典力学不相容。有了这个原理,才能够准确地定义不同地点的同时性。

狭义相对论的解释说明

\

1、惯性系和洛伦兹变换

使牛顿力学第一定律(惯性定律)成立的那类参考系称为惯性系。狭义相对论的公式和结论只在惯性系中有效。两个惯性系K和K'之间的坐标变换是洛伦兹变换:

\

式中c为光在真空中传播的速度,v为K'系相对于K系的速度。洛伦兹变换是线性变换,把其中的时空坐标换成任意坐标间隔其形式不变。所以,洛伦兹变换中的时空坐标也可当成是任意坐标间隔。这里K系和K'系被选成坐标轴互相平行且在初始时刻两系统的坐标原点重合,因而这里给出的变换是无空间转动的特殊洛伦兹变换。更一般的变换是把K'系统的坐标轴相对于K系做一任意的空间转动,相应的变换称为一般洛伦兹变换。另外,如果在初始时刻不使两系统的原点重合,则相应的变换就是在洛伦兹变换中每个公式的右边各加上一个常数(称为时空平移)使之成为非齐次的线性变换,它们称为彭加勒变换。

洛伦兹变换是狭义相对论中最基本的关系式,反映了时间和空间是不可分割的,要确定一个事件,必须同时使用三个空间坐标和一个时间坐标,这四个坐标所组成的空间称为四维空间(四维时空)。
在低速近似下,被观察的物质的速度也远比光速小,洛伦兹变换退化为伽利略变换。由相对性原理和洛伦兹变换建立起来的相对论性力学虽然不同于牛顿力学,但是,牛顿力学仍然是相对论性力学的很好的低速近似。

2、同时性的相对性

如果在某个惯性系中看来,不同空间点发生的两个物理事件是同时的,那么在相对于这一惯性系运动的其他惯性系中看来就不再是同时的。所以,在狭义相对论中,同时性的概念不再有绝对意义,它同惯性系有关,只有相对意义。但是,对于同一空间点上发生的两个事件,同时性仍有绝对意义。

\

3、坐标时和固有时

由同一只标准时钟记录的时间(间隔)称为固有时(间隔);放在不同地点的两只标准时钟记录的时间之间的差值称为坐标时(间隔)。物理时间(指实际直接测量的时间)对应于固有时;而坐标时与同时性定义相关,不是直接的可观测量。

4、速度相加定理

如果洛伦兹变换中的时间坐标和空间坐标描述的是某一物体的运动,则用时间变换式去除3个空间坐标变换式就得到爱因斯坦速度相加公式:

ux'=(ux-v)/(1-vux/c2)
uy'=uy(1-v2/c2)1/2/(1-vux/c2)
uz'=uz(1-v2/c2)1/2/(1-vux/c2)

式中(ux',uy',uz')为物体在K'系中的速度分别沿(x',y',z')轴的分量,(ux,uy,uz)则为K系中的相应速度分量。爱因斯坦速度相加定理解释了A.斐索曾于1851年完成的流动水中的光速实验;1905年之后许多运动流体和运动固体中的光速实验也都在更高的精度上与爱因斯坦速度相加公式的预言相符。

\

5、多普勒效应

时钟变慢直接导致相对论性的多普勒效应(多普勒频移)。当光源同观察者之间有相对运动时,观察者测到的光波频率将同光源静止时的光频有差别,这种差别称为多普勒频移。经典理论也预言了多普勒频移,但狭义相对论的预言同经典理论的预言不同。两种预言之间的差别是由运动时钟的速率不同于静止时钟的速率造成的,也就是时钟变慢效应造成的。

光线的频率和传播的方向在洛伦兹变换下分别按如下公式变换:ν'=(1-v·cosθ/c)(1-v2/c2)1/2cosθ'=(cosθ-v/c)(1-v·cosθ/c)

式中ν和ν'分别为在K系和K'系中测得的光波频率,θ和θ'为光线的传播方向分别与x轴和x'轴的正方向之间的夹角。当θ=90°(即垂直于光线方向)时,
ν'=v/(1-v2/c2)1/2

这就是横向多普勒效应(牛顿经典物理学没有这种效应)。横向(或二阶)多普勒效应实际上来自时间膨胀效应,它们已被很多实验直接证实。

\

6、托马斯进动

考虑三个惯性系K、K'、K'',其中K、K'的坐标轴互相平行因而它们之间是无转动的洛伦兹变换;类似地,K、K''的坐标轴也互相平行因而它们之间也是无转动的洛伦兹变换。但是,K'、K''之间则是有转动的洛伦兹变换,即K''和K的坐标轴不再互相平行而是存在一个空间转动,这种转动称为维格纳转动(经典物理学中的伽利略变换没有这类效应)。1927年L.托马斯首先把这种运动学效应应用于电子在原子核电场中作闭合轨道运动的情况,发现电子的磁矩在运动中会产生进动,这种进动后来被称为托马斯进动。考虑了托马斯进动之后,原子光谱的精细结构分裂和反常塞曼效应就可同时得到圆满解释。托马斯进动效应还表现在电子和μ子在均匀磁场中做圆周运动时其自旋的进动频率:

ωs=[(g-2)/2]eB/(m0c)+ωc

式中(g-2)因子相应于反常磁矩,e为电荷,m0为静质量,B为磁感应强度c为光速,ωc=eB/(γm0c)是圆周运动的回旋频率,其中:γ=1/(1-v2/c2)1/2

多年来进行的电子和μ子的(g-2)因子的实验测量结果与上面的理论预言在极高精度上相符合。原文地址:http://www./article/201606/13143.html

狭义相对论背后的故事

\

1、发现灵感

广义相对论源于一个倏忽而至的灵感,故事发生在1907年底。1905年被称为“奇迹年”,爱因斯坦在这一年中提出了狭义相对论和光量子理论,然而两年时间过去了,他仍然还只是瑞士专利局的一名专利审查员。当时,整个物理学界还没能跟上他的天才智慧。

有一天,他坐在位于伯尔尼的办公室中,突然有了一个自己都为之“震惊”的想法。他回忆道:“如果一个人自由下落,他将不会感到自己的重量。” 后来,他将此称为“我一生中最幸福的思想”。这个自由落体者的故事已然成为了一个标志,甚至有一些版本真的认为,当时曾有一位油漆工从专利局附近的公寓楼顶坠落。与其他关于引力发现的绝妙故事(伽利在比萨斜塔投掷物体以及牛顿被苹果砸中脑袋)一样,这些事迹都只是经过美化、杜撰的民间传闻罢了。爱因斯坦更愿意关注宏大的科学议题,而非“琐碎的生活” ,他不太可能因看到一个活生生的人从屋顶跌落而联想到引力理论,更不可能将此称为一生中最幸福的思想。

不久,爱因斯坦进一步完善了这个思想实验,他想象自由落体者处在一个密闭空间中,比如一部自由坠落的升降机。在这个密闭空间中,自由落体者会感到失重,并且他抛出的任何物体都会与他一起漂浮。他将无法通过实验来辨别自己所处的密闭空间是正在以某一加速度做自由落体运动,还是正在外太空的无重力区域漂浮。

\

然后,爱因斯坦想象这个人仍在同一个密闭空间里,处于几乎没有重力的外太空中。此时有一个恒力将密闭空间以某一加速度向上拉升,他将会感到自己的脚被压到地板上。如果此时,他抛出一个物体,那么该物体也将会以加速运动落在地板上,就如同他站在地球上一样。他没有任何方法能够区分,自己是受到引力的作用,还是受到向上加速度的作用。

爱因斯坦称之为“等效原理” (the equivalence principle)。以局域效应来看,引力和加速度是等效的。因此,二者是同一种现象的不同表现形式,即可以同时对加速度和引力作出解释的某种“宇宙场” (cosmic ?eld) 。

接下来,爱因斯坦花费了8年时间,把这个自由落体者思想实验,改写成为物理学史上最美、最惊艳的理论。在此期间,爱因斯坦的个人生活也发生了巨大的改变,他与妻子的感情破裂,独自一人居住在德国柏林,他不再是瑞士专利局的一名职员,而是成为了一名教授及普鲁士科学院(Prussian Academy of Sciences)的院士,不过后来,他开始渐渐疏远普鲁士科学院的同事,因为在那里,反犹太主义的浪潮正在不断高涨。去年,美国加州理工学院和普林斯顿大学共同决定,将爱因斯坦的文稿档案上传至互联网,让人们可以免费了解在这段时期中,爱因斯坦个人生活及对宇宙的观念的变化历程。当我们阅读档案,看到1907年年底爱因斯坦匆匆记下“一种基于相对论原理对加速度和引力的新思考”时,似乎可以感受到他当时的激动与兴奋。但当读到, “几天之后他以准备工作不正确、不严密、不清晰为由,拒绝了一家电力公司的交流电机专利申请” ,爱因斯坦的暴躁与厌倦也跃然纸上。

接下来的几年充满了戏剧性,因为一方面,爱因斯坦要争分夺秒地赶在竞争对手之前,找到描述广义相对论的数学表达式;另一方面,他又要与分居的妻子在财产及探视两个儿子的权利方面作抗争。而到了1915年,爱因斯坦终于达到了事业的巅峰,提出了广义相对论的完整的理论形式,永远地改变了我们对整个宇宙的理解。

2、与第一任妻子关系破裂

\

那时,爱因斯坦已搬到德国柏林,成为了一名教授,还当选了普鲁士科学院院士。但是,他发现自己的工作几乎没有得到任何支持。由于反犹太主义浪潮不断高涨,他无法与身边的同事形成研究伙伴关系。他与妻子米列娃? 玛里奇(Mileva Mari‘c)关系破裂,玛里奇也是一位物理学家,1905年爱因斯坦创立狭义相对论时,她曾是他的“顾问” 。米列娃带着他们年仅11岁和5岁的两个儿子回到了苏黎世。爱因斯坦与他的表姐艾尔莎(Elsa)关系在爱因斯坦耳边有两个滴答作响的时钟:其一他能感觉到希尔伯特正在逐步接近正确的方程其二他已同意在11月份以他的理论为主题,为普鲁士科学院的院士们开设四次周四讲座。暧昧,后来她成为了爱因斯坦的第二任妻子,不过那时,他仍然独自生活在位于柏林中部的一间没有什么家具的公寓里。在那里,他无规律地吃饭、睡觉、弹奏小提琴,孤独地为他的伟大理论而奋斗。

整个1915年,爱因斯坦的个人生活开始陷入混乱。一些朋友不停催促他与米列娃离婚,然后和艾尔莎结婚;另一些人则劝诫爱因斯坦不应该再与艾尔莎见面,也不应再让她接近他的儿子们。米列娃曾屡次写信向他要钱,对此爱因斯坦感到难以抑制的苦痛。“我认为这种要求已经没有讨论的余地, ”他回信说, “你总是试图控制我所拥有的一切,这绝对是不光彩的。 ”爱因斯坦努力维持着与两个儿子之间的通信往来,但他们却很少回信,于是,他指责米列娃不把自己的信给他们看。

然而就在1915年6月底,他的个人生活处于混乱不堪之际,爱因斯坦却思考出了许多关于广义相对论的内容。在那个月底,他以正在思考的问题为主要内容,在德国哥廷根大学(University of G?ttingen)开设了为期一周的系列讲座。哥廷根大学是全世界最杰出的数学研究中心,拥有许多非凡的天才,其中最著名的就是数学家大卫? 希尔伯特(DavidHilbert)。爱因斯坦特别渴望与希尔伯特沟通交流——不过,后来发生的事情表明,爱因斯坦或许有些过于性急——他向希尔伯特解释了相对论的每一个艰涩难懂的细节。

3、与数学家希尔伯特竞争

\

对哥廷根的访问取得了成功.几周之后,爱因斯坦向一位物理学家朋友说“我已说服希尔伯特认同广义相对论” 。在给另一位物理学家的信中,他更是赞叹道: “我已被希尔伯特深深吸引!”惺惺相惜之情,溢于言表。希尔伯特也同样为爱因斯坦及其理论着迷,以致于没过多久,他就开始自已动手尝试解开爱因斯坦迄今尚未完成的谜题——寻找能够完整描写广义相对论的数学方程。

1915年10月初,爱因斯坦已经听到了希尔伯特追寻答案的“脚步声” ,与此同时,他意识到当前版本的理论框架——他已花费长达两年时间,在《广义相对论和引力场理论纲要》(Entwurf)基础上修改得到的结果——存在着严重缺陷。他的方程无法恰当地解释旋转运动。此外,爱因斯坦还意识到,他的方程并不是广义协变的,这意味着这些方程既不能真正使所有加速运动或非匀速运动成为相对的,也不能完全解释天文学家所观测到的水星轨道反常现象。水星的近日点,即最接近太阳的点,一直在逐渐偏移,牛顿物理学或爱因斯坦当前的理论版本,都无法对其做出恰当的解释。

\

在爱因斯坦耳边有两个滴答作响的时钟:其一他能感觉到希尔伯特正在逐步接近正确的方程;其二他已同意在11月份以他的理论为主题,为普鲁士科学院的院士们开设四次周四讲座。整个11月份,爱因斯坦几乎累得精疲力竭,在此期间,他一直在努力解决一系列的方程式,不断进行修改和更正,准备向终点作最后的冲刺。甚至在11月4日,爱因斯坦到达普鲁士国家图书馆大礼堂,即将开始第一次演讲时,他仍在努力修改他的理论。他一开始演讲就说: “过去4年来,我尝试建立广义相对论。 ”爱因斯坦以极为坦诚的态度,详尽讲述了他所面临的困难,并且承认自己还未找到完全符合该理论的数学方程。此时的爱因斯坦正处于创造力集中爆发前的阵痛阶段,科学史上的最重要时刻即将到来。

同时,他还要处理家庭生活中的危机。妻子不断给他写信,催促他寄钱并跟他讨论与两个儿子联系的规定。通过一位他们共同的朋友,她向爱因斯坦表示不希望孩子们去柏林见他,因为在那里孩子们可能会发现他与他表姐的婚外情爱因斯坦向朋友保证,他在柏林独自生活, “荒凉”的公寓已经有了“一种近乎教堂般的气氛” 。谈及爱因斯坦在广义相对论方面的研究工作,这位朋友回答说: “这是理所应当的,因为非比寻常的神圣力量正在那里发挥作用。 ”

就在他提交第一篇论文的那天,他给住在瑞士的大儿子汉斯(Hans)写了一份饱含苦痛又令人动容的信,信中写道:昨天我收到了你寄来的短信,我因此感到十分高兴。我原本担心你不再愿意给我写信了,我会尽可能争取,让我们每年都有一个月时间待在一起,这样你仍然能感受到有一个疼你爱你的父亲。你可以从我这里学到很多东西,这是其他任何人都无法教给你的??在过去的几天里,我完成了有生以来最好的一篇论文。当你长大一些了,我会把这篇论文讲给你听。在这封信的最后,他为自己表现出的心烦意乱感到些许抱歉。

\

他写道: “我常常专注于我的工作,以致忘记吃午饭。 ” 爱因斯坦还与希尔伯特进行了一次略显尴尬的交流。爱因斯坦听说这位哥廷根的数学家已经发现了《纲要》中方程的缺陷,担心他抢到先机,便写信给希尔伯特说,自己已经发现了其中的缺陷,并寄去了一份11月4日的演讲稿。在11月11日的第二次演讲中,爱因斯坦使用了新的坐标系,使得他的方程成为广义协变方程。但是结果表明,这种改变并没有起到决定性的作用。此时的他虽然离最终答案只差最后一点点距离,却无法再向前迈进一步。爱因斯坦又一次将演讲稿寄给了希尔伯特,并询问希尔伯特自己的进展情况。他写道: “我的好奇心正在妨碍我的工作!”

爱因斯坦肯定对希尔伯特的回信感到烦躁不安。因为希尔伯特说,已经想到一个“解决你的伟大问题的方法” ,并邀请爱因斯坦在11月16日来哥廷根,听他当面阐述。 “既然您对此很感兴趣, 所以我想在下周二完整详细地讲述我的理论, ”希尔伯特写道。

“如果您能来,我和妻子将十分高兴。 ”然后,在签下自己的名字后,希尔伯特又加上了一句既诱人又令人不安的附言——“根据我对您这篇最新论文的理解,您的解决方法与我的完全不同。 ”

狭义相对论的验证
\

验证狭义相对论的实验大体上分为六大类:

①相对性原理的实验检验;
②光速不变原理的实验检验;
③时间膨胀实验;
④缓慢运动媒质的电磁现象实验;
⑤相对论力学实验;
⑥光子静止质量上限的实验。关于相对性原理的实验检验,电动力学和光学的很多例子,特别是运动物体的电磁感应现象,都是很有说服力的,不再赘述,着重说明其余五大类的验证实验。

1、光速不变性的实验

首先,同光速不变原理有关的大量实验已经证明,真空中光速同光源的运动速度和惯性运动状态无关。定量的测量表明,真空中平均回路光速с是一个常数,约为每秒30万千米(с的精确测量值见基本物理常数)。这类实验中,最著名的是迈克耳孙-莫雷实验。这个实验是在相对论出现之前很久的1881年首先由A.迈克耳孙完成的。1887年迈克耳孙和E.莫雷又用干涉仪以更高的精度重新做了观测。这个实验的目的是测量地球相对于以太的运动速度。但实验结果同以太论的预言相矛盾。狭义相对论建立之后,这个实验就被看成是光速不变原理和狭义相对性原理以及否定以太论的重要实验基础。还要说明一点,现有的实验(包括迈克耳孙-莫雷实验)并没有证明光速是否同方向无关。引入光速同方向无关的假定是为了定义不同地点的事件的同时性,在没有其他方法确定这种同时性之前,光速是否同方向无关是无法用实验判断的。

2、多普勒频移观测

多普勒频移的观测,最高精度已达到0.5%;对介子寿命的观测,精度约达0.4%;用原子钟做的实验精度较低,约10%。这些实验的结果都同相对论的预言符合。在原子钟环球航行的实验中,虽然飞机速度远小于光速,但由于测量精度很高,仍然观测到了时间膨胀的相对论效应。

\

3、相对论力学实验

包括质速关系(惯性质量随物体运动速度的变化)和质能关系(即E=mс2关系)。质速关系是用电子和质子做的,事实上各种高能质子加速器和电子加速器的设计建造都验证了质速关系。质能关系主要是通过核反应来进行检验,精度达到了百万分之三十五。

荷电粒子的电磁偏转实验、回旋加速器的运转、高速粒子飞行时间的测量、原子光谱精细结构分裂的解释等都为质速关系提供了证据。原子能发电、原子弹和氢弹的实现都以质能关系为理论基础。

4、光子静质量实验

有关电子静止质量的实验都没有观察到光子有静质量,因此只给出了光子静质量的上限。对库仑定律的检验给出的上限是1.6×10-47克,根据银河系旋臂磁场范围对光子静质量上限做的估计约为10-59克。

除了上述六类主要的实验外,还有其他形式的实验。所有这些实验都没有观察到同狭义相对论有什么矛盾。此外,狭义相对论在相对论性量子力学、量子场论、粒子物理学、天文学、天体物理学、相对论性热力学和相对论性统计力学等领域中的成功应用,也都为它的正确性提供了丰富的证据。

虽然狭义相对论在理论的逻辑结构和形式上是很完美的,在实验上已有了非常牢固的基础,但人们仍对它不断深入进行研究:理论方面,探讨它在新领域中的应用;实验方面,使用新的观测方法和提高了测量精度的方法,更精密地检验它的正确性。此外还有不少实验试图观察超光速现象,但至今并没有得到令人信服的结果。

狭义相对论的意义及局限性
\

1、狭义相对论的意义

爱因斯坦的哲学信念:整个自然界是统一的、和谐的。他吸取了休谟对先验论、马赫对“绝对时空”概念的批判成果。其中马赫哲学对爱因斯坦影响最大马赫认为时间和空间的量度与物质运动有关,时空观念是通过经验形成的,“绝对时空”没有经验根据。马赫据此对牛顿的“绝对时间”和“绝对空间”进行批判,否定“绝对时空”概念,并认为时间测量依赖于参考系。爱因斯坦从考察两个在空间上分隔开的事件的“同时性”入手,否定了“同时性”的绝对性及其有关的“绝对时间”概念,从而也否定了“绝对空间”概念以及实质上被当作绝对空间的“以太”的存在。爱因斯坦认为不存在绝对静止的参考系,麦克斯韦-洛伦兹的电动力学方程是正确的,物体在惯性系中运动定律不变的假设导致光速不变的概念。

相对论中的光速不变性可以从理论上由麦克斯韦方程组得出:c=1/(ε0μ0)1/2,光速由真空介电常数ε0与磁导率μ0决定,是一个不变的常数并且不依赖于参考系的选择。光速不变原理是宇宙时空对称性的体现。

狭义相对论不但可以解释经典物理学所能解释的全部物理现象,还可以解释一些经典物理学所不能解释的物理现象,并且预言了不少新的效应。它导致了光速是极限速度,导致了不同地点的同时性只有相对意义,预言了长度收缩和时钟变慢,给出了爱因斯坦速度相加公式、质量随速度变化的公式和质能关系此外,按照狭义相对论,光子的静止质量必须是零。

2、狭义相对论的局限性

狭义相对论的建立,对物理学起了巨大的推动作用,并且深入到量子力学的范围,成为研究高速粒子不可缺少的理论,并取得了丰硕的成果。但是有两个原则性的根本问题未能解决。第一个是定义惯性系引起的困难。由于否定了“绝对时空”,惯性参考系(惯性系)成了无法定义的概念。如果惯性系是指牛顿第二定律在其中成立的参考系,那么只有在惯性系中牛顿第二定律才能成立,从而陷入“逻辑循环”,整个理论如同建筑在沙滩之上。第二个是万有引力引起的困难。万有引力定律与“绝对时空”紧密相连,必须加以修正,但其在洛伦兹变换下不具有协变性,因此无法纳入狭义相对论的框架。直至广义相对论建立之后,问题才得以彻底解决。

 

结语:狭义相对论是现代物理的基本理论之一,一切微观和宏观的物理理论或现象都满足狭义相对论的要求,这也被很多现代科学仪器所证实,爱因斯坦的狭义相对论为广义相对论奠定了基础,帮助人们更好的理解了“四维时空”等理论,长久以来对人类做出了巨大的贡献。

狭义相对论,四维时空的奥秘!

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多