分享

【动态规划】最长公共子序列与最长公共子串

 黑尘子 2017-05-24

1. 问题描述

子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串

  • cnblogs
  • belong

比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与母串保持一致,我们将其称为公共子序列。最长公共子序列(Longest Common Subsequence, LCS),顾名思义,是指在所有的子序列中最长的那一个。子串是要求更严格的一种子序列,要求在母串中连续地出现。在上述例子的中,最长公共子序列为blog(cnblogs, belong),最长公共子串为lo(cnblogs, belong)。

2. 求解算法

对于母串X=<x1,x2,?,xm>, Y=<y1,y2,?,yn>,求LCS与最长公共子串。

暴力解法

假设 m<n, 对于母串X,我们可以暴力找出2m个子序列,然后依次在母串Y中匹配,算法的时间复杂度会达到指数级O(n?2m)。显然,暴力求解不太适用于此类问题。

动态规划

假设Z=<z1,z2,?,zk>XY的LCS, 我们观察到

  • 如果xm=yn,则zk=xm=yn,有Zk?1Xm?1Yn?1的LCS;
  • 如果xmyn,则ZkXmYn?1的LCS,或者是Xm?1Yn的LCS。

因此,求解LCS的问题则变成递归求解的两个子问题。但是,上述的递归求解的办法中,重复的子问题多,效率低下。改进的办法——用空间换时间,用数组保存中间状态,方便后面的计算。这就是动态规划(DP)的核心思想了。

DP求解LCS

用二维数组c[i][j]记录串x1x2?xiy1y2?yj的LCS长度,则可得到状态转移方程

c[i,j]={0i=0 or j=0c[i?1,j?1]+1i,j>0 and  xi=yjmax(c[i,j?1],c[i?1,j])i,j>0 and xiyj

代码实现

public static int lcs(String str1, String str2) {
    int len1 = str1.length();
    int len2 = str2.length();
    int c[][] = new int[len1+1][len2+1];
    for (int i = 0; i <= len1; i++) {
        for( int j = 0; j <= len2; j++) {
            if(i == 0 || j == 0) {
                c[i][j] = 0;
            } else if (str1.charAt(i-1) == str2.charAt(j-1)) {
                c[i][j] = c[i-1][j-1] + 1;
            } else {
                c[i][j] = max(c[i - 1][j], c[i][j - 1]);
            }
        }
    }
    return c[len1][len2];
}

DP求解最长公共子串

前面提到了子串是一种特殊的子序列,因此同样可以用DP来解决。定义数组的存储含义对于后面推导转移方程显得尤为重要,糟糕的数组定义会导致异常繁杂的转移方程。考虑到子串的连续性,将二维数组c[i,j]用来记录具有这样特点的子串——结尾为母串x1x2?xiy1y2?yj的结尾——的长度。

得到转移方程:

c[i,j]={0i=0 or j=0c[i?1,j?1]+1xi=yj0xiyj

最长公共子串的长度为 max(c[i,j]), i{1,?,m},j{1,?,n}

代码实现

public static int lcs(String str1, String str2) {
    int len1 = str1.length();
    int len2 = str2.length();
    int result = 0;     //记录最长公共子串长度
    int c[][] = new int[len1+1][len2+1];
    for (int i = 0; i <= len1; i++) {
        for( int j = 0; j <= len2; j++) {
            if(i == 0 || j == 0) {
                c[i][j] = 0;
            } else if (str1.charAt(i-1) == str2.charAt(j-1)) {
                c[i][j] = c[i-1][j-1] + 1;
                result = max(c[i][j], result);
            } else {
                c[i][j] = 0;
            }
        }
    }
    return result;
}

3. 参考资料

[1] cs2035, Longest Common Subsequence.
[2] 一线码农, 经典算法题每日演练——第四题 最长公共子序列.
[3] GeeksforGeeks, Dynamic Programming | Set 29 (Longest Common Substring).

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约