【考纲要求】 概率与统计 (1)了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.了解互斥事件、对立事件的意义及其运算公式. (2)理解古典概型及其概率计算公式.会计算一些随机事件所含的基本事件数及事件发生的概率. (3)了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点. (4)理解样本数据标准差的意义和作用,会计算数据标准差. (5)能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释. (6)会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想. (7)会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题. (8)理解取有限个值的离散型随机变量均值、方差的概念. (9)能计算简单离散型随机变量的均值、方差,并能解决一些实际问题. 独立性检验:了解独立性检验(只要求2*2列联表)的基本思想、方法及其简单应用. 回归解析:了解回归解析的基本思想、方法及其简单应用. 【高频考点突破】 考点1 古典概型与几何概型 【规律方法】1.解决古典概型问题,关键是弄清楚基本事件的总数n以及某个事件A所包含的基本事件的个数m,然后由公式P(A)=m/n来求概率; 2.几何概型解决的关键在于把所有基本事件转化为与之对应的区域; 3.对于较复杂的互斥事件可先分解为基本事件,然后用互斥事件的概率加法公式求解. 考点2 互斥事件与相互独立事件 【规律方法】1.求复杂事件的概率,要正确分析复杂事件的构成,看复杂事件能转化为几个彼此互斥事件的和事件,还是能转化为几个相互独立事件同时发生的积事件,然后用概率公式求解; 2.求复杂的互斥事件的概率一般有两种方法:一是直接求解法,将所求事件的概率分解为一些彼此互斥的事件的概率的和,运用互斥事件的求和公式计算;二是间接求法,先求此事件的对立事件的概率,再用公式计算. 考点3 独立重复实验与二项分布 考点4离散型随机变量的分布列、均值与方差 考点5 抽样方法 【规律方法】
(1)当总体中的个体数较多,并且没有明显的层次差异时,可用系统抽样的方法,把总体分成均衡的几部分,按照预先制定的规则,从每一部分抽取一个个体,得到需要的样本. (2)在利用系统抽样时,经常遇到总体容量不能被样本容量整除的情况,这时可以先从总体中随机地剔除几个个体,使得总体中剩余的个体数能被样本容量整除. 考点6 用样本估计总体 【分析】本题主要考查频率分布直方图,是一道基础题目.从历年高考题目看,图表题已是屡见不鲜,作为一道应用题,考查考生的视图、用图能力,以及应用数学解决实际问题的能力. 【答案】C 【规律方法】1.利用频率分布直方图估计样本的数字特征 (1)中位数:在频率分布直方图中,中位数左边和右边的直方图的面积相等,由此可以估计中位数的值. (2)平均数:平均数是频率分布直方图的“重心”,等于图中每个小矩形的面积乘以小矩形底边中点的横坐标之和. (3)众数:在频率分布直方图中,众数是最高的矩形底边的中点的横坐标. 2.平均数反映了数据取值的平均水平,标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大,越不稳定;标准差、方差越小,数据的离散程度越小,越稳定. 考点7 线性回归分析与独立性检验 【学法导航】 1.当试验结果构成的区域为长度、面积、体积、弧长、夹角等时,应考虑使用几何概型求解;利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域. 2. 事件的互斥和对立是既有联系又有区别的两个概念,要充分利用对立事件是必然有一个发生的互斥事件.在判断这些问题时,先要判断两个事件是不是互斥事件(即是否不可能同时发生),然后判断这两个事件是不是对立事件(即是否必然有一个发生).在解答与两个事件有关的问题时一定要仔细斟酌,全面考虑,防止出现错误. 3.反映样本数据分布的主要方式:频率分布表、频率分布直方图、茎叶图.关于频率分布直方图要明确每个小矩形的面积即为对应的频率,其高低能够描述频率的大小,高考中常常考查频率分布直方图的基本知识,同时考查借助频率分布直方图估计总体的概率分布和总体的特征数,具体问题中要能够根据公式求解数据的平均数、众数、中位数和方差等.由样本数据估计总体时,样本方差越小,数据越稳定,波动越小. 4.独立性检验问题,要确定2×2列联表中的对应数据,然后代入公式求解K2即可. 5.几种常见的分布列的求法 (1)取球、投骰子、抽取产品等问题的概率分布,关键是概率的计算.所用方法主要有划归法、数形结合法、对应法等对于取球、抽取产品等问题,还要注意是放回抽样还是不放回抽样. (2)射击问题:若是一人连续射击,且限制在n次射击中发生k次,则往往与二项分布联系起来;若是首次命中所需射击的次数,则它服从几何分布,若是多人射击问题,一般利用相互独立事件同时发生的概率进行计算. (3)对于有些问题,它的随机变量的选取与所问问题的关系不是很清楚,此时要仔细审题,明确题中的含义,恰当地选取随机变量,构造模型,进行求解. 精品推荐 2018年高考数学压轴突破140 攻克圆锥曲线十大考点学法导航 |
|
来自: 当以读书通世事 > 《073-数学(大中小学)》