坐标转换通常包括两层含义,即坐标系变换与基准变换。坐标系变换就是在同一地球椭球下,空间点的不同坐标表示形式间进行变换;基准变换则是指空间点在不同的地球椭球间的坐标变换。在RTK测量中,一项重要的工作就是进行基准变换,从WGS84大地坐标变换为当地工程所用椭球的大地坐标,一般使用三参数、四参数或七参数转换相似变换进行,然后再从大地坐标投影至工程所用平面坐标,计算流程见下图。RTK求解坐标和高程转换参数(点校正)流程图 在坐标转换前应进行资料搜集,主要搜集测区的控制点成果及GPS 测量资料, 测区的坐标系统和高程基准的参数,包括:参考椭球参数,中央子午线经度,纵、横坐标的加常数,投影面正常高,平均高程异常等。WGS-84 坐标系与测区地方坐标系的转换参数及WGS-84 坐标系的大地高基准与测区的地方高程基准的转换参数等。 对于较大的测区,首先需要进行作业测区的划分,然后按作业测区分别求解转换参数,各种GPS随机软件均提供有坐标转换模块。平面坐标转换常使用七参数或四参数方法进行,高程转换采用高程拟合的方法进行,坐标转换参数和高程转换参数一般分别进行求解。转换参数可根据测区控制点的两套坐标求得,两套坐标分别是WGS84大地坐标(B,L,H)或(X,Y,Z),和平面坐标、正常高(x,y,h)。一个测区中使用的已知控制点平面点不得少于3个,高程点不得少于4个,控制点应包围作业测区并均匀分布,且相邻测区求解转换参数所用控制点应将相邻区域内的控制点作为共用点使用。转换参数求解可分内业求解和外业实测求解,在已知控制点两套坐标不全时,可在现场采集数据后计算转换参数。在采集地形点时可先测后求转换参数。放样平面或高程点时必须对应先求解转换参数,残差合格后方可进行测量。 已知控制点与测区位置分布示意图 一、三参数坐标转换当(XA、YA、ZA)和(XB、YB、ZB)表示不同的参心(或地心)空间直角坐标系,两坐标系各轴相互平行、坐标原点不相重合。ΔX、ΔY、ΔZ表示两参心(或地心)空间直角坐标系之间一个坐标系原点相对于另一个坐标系原点的位置向量OBOA在三个坐标轴上的分量,通常称为三个平移转换参数。模型如下式: 这是在假定两坐标系间各坐标铀相互平行条件下导出的,这与实际应用情况并不相符。但由于各坐标铀之间的夹角不大,求出夹角的误差与夹角本身在数值上属同一数量级,故在精度要求不高的情况下,可设各坐标铀相互平行,这种情况在国内外也屡见不鲜,在RTK测量中同样也可以应用。 三参数坐标转换示意图 例如,在某铁路工程测量中用于求解转换参数的已知点的两套坐标为: 一套坐标为WGS84大地坐标(B,L,H)或WGS84空间坐标(X,Y,Z)。某GPS点的大地坐标(37º35′2″.31895,111º08′54″.20451,949.6049m);空间坐标(-1826103.3930m,4720583.1243m,3869533.5576m)。此套坐标应为高等级GPS控制测量时自由网平差得到的三维坐标成果。注意事项:在一个测区求解转换参数时所用的已知点,其WGS84坐标应为一个GPS控制网自由网平差或三维平差所得的成果。 另一套坐标为RTK测量时所用的坐标系坐标和高程,平面坐标为1954北京坐标系坐标、1980西安坐标系坐标、地方独立坐标或工程所设计的任意带坐标系坐标等。高程系统有1985国家高程系统、1956黄海高程系统等。注意各已知点的地方坐标系坐标、高程系统应当一致,如果不一致要进行转换后使用。 如果已知点没有WGS84坐标,可在现场采集数据并计算转换参数。现场采集数据可用静态、快速静态或动态进行,在运用动态进行采集数据时,一个测区求解转换参数所用的已知点应在同一基准站设置情况下进行。转换参数的求解可根据不同GPS接收机随机软件在计算机上或接收机电子手簿上进行。 二、四参数坐标转换 不同地球椭球坐标系的平面相似转换实际上是一种二维转换,平面坐标转换包含4个转换因子,即2个平移因子(X平移:ΔX、Y平移:ΔY)、1个旋转因子(旋转角:α)和1个尺度因子(尺度比:m)。 四参数转换示意图 在RTK测量中,需要将WGS84坐标系转换到1954年北京坐标系(或1980西安坐标系、独立坐标系),其转换的数学模型为: 1、先旋转、再平移、最后统一尺度 2、先平移、再旋转、最后统一尺度 在有的后处理软件中的经典2D法、一步法,均属于四参数法。这种方法的优点是利用较少的信息即可计算出转换参数。不需要已知地方椭球和投影模型就可以利用最少的点计算出转换参数。值得注意的是当使用一个或两个地方点计算参数时,作为计算的转换参数仅对于点的附近区域是有效的。 三、七参数坐标转换在RTK的坐标转换中,一般常用布尔莎七参数模型转换,又称七参数转换法。七个参数包括三个平移参数ΔX、ΔY、ΔZ,三个旋转参数εx、εy、εz,和一个尺度参数m。 七参数转换示意图 其数学模型为: 在有的后处理软件中的经典3D法就属于七参数法。 文章来源:《GPS RTK测量技术实用手册》 |
|