如图,用相同的小正方形按照某种规律进行摆放,则第8个图形中小正方形的个数是( ) 则第n个图形共有小正方形的个数为(n+1)2+n,所以第8个图形共有小正方形的个数为:9×9+8=89.观察图形可知,第1个图形共有小正方形的个数为2×2+1;第2个图形共有小正方形的个数为3×3+2;第3个图形共有小正方形的个数为4×4+3;…;则第n个图形共有小正方形的个数为(n+1)2+n,进而得出答案.规律型问题也称之为归纳猜想问题,或也叫观察、归纳与猜想题,此类题型最大特点:问题的结论或条件不直接给出,而常常是给出一列数、一列等式或一列图形的一部分,然后让考生通过观察、分析、概括、推理、猜想等一系列活动,逐步确定需要求的结论。无论是平时的数学测验,还是中考,规律型问题一直是中考数学热点,在试卷中多以选择题、填空题、解答题的形式出现,能很好考查考生解决问题的能力。
|