分享

「数学思维训练」反直觉的数学问题07 - 卡拉数学

 123xyz123 2022-03-05

你的数学直觉怎么样?你能凭借直觉,迅速地判断出谁的概率大,谁的概率小吗?我们将连载这种反直觉的有趣数学问题。如果你感兴趣的话,你可以先试着用直觉来判断,再详细分析答案,看看你猜对了多少。

想了解往期题目的读者,可以关注我们之后搜索历史文章哦。

我们来开始今天的题目:


16. A 、 B 两人为一件小事争执不休,最后决定用抛掷硬币的办法来判断谁对谁错。不过,为了让游戏过程更刺激,两人决定采用这样一种方案:连续抛掷硬币,直到最近三次硬币抛掷结果是“正反反”或者“反反正”。如果是前者,那么 A 获胜;如果是后者,那么 B 获胜。理论上,下面哪种情况的可能性更大一些?

A.A 获得游戏的胜利
B.B 获得游戏的胜利
C.上述两种情况的出现概率相同

乍看上去, B 似乎没有什么不同意这种玩法的理由,毕竟“正反反”和“反反正”的概率是均等的。连续抛掷三次硬币可以产生 8 种不同的结果,上述两种各占其中的 1/8 。况且,序列“正反反”和“反反正”看上去又是如此对称,获胜概率怎么看怎么一样。

不过,实际情况究竟如何呢?实际情况是,这个游戏并不是公平的—— A 的获胜概率是 B 的 3 倍!虽然“正反反”和“反反正”在一串随机硬币正反序列中出现的频率理论上是相同的,但别忘了这两个序列之间有一个竞争的关系,它们要比赛看谁先出现。一旦抛掷硬币产生出了其中一种序列,游戏即宣告结束。这样一来, B 就处于了一个非常窘迫的位置:不管什么时候,只要掷出了一个正面,如果 B 没赢的话, B 就赢不了了——在出现“反反正”之前, A 的“正反反”必然会先出现。

事实上,整个游戏的前两次硬币抛掷结果就已经决定了两人最终的命运。只要前两次抛掷结果是“正正”、“正反”、“反正”中的一个, A 都必胜无疑, B 完全没有翻身的机会;只有前两次掷出的是“反反”的结果, B 才会赢得游戏的胜利。因此, A 、 B 两人的获胜概率是三比一, A 的优势绝不止是一点。所以说,这道题目的正确选项为 A 。

似乎是还嫌游戏双方的胜率差异不够惊人, 2010 年, Steve Humble 和 Yutaka Nishiyama 提出了上述游戏的一个加强版。去掉一副扑克牌中的大小王,洗好剩下的 52 张牌后,一张一张翻开。一旦出现连续三张牌,花色依次是红黑黑,那么玩家 A 加一分,同时把翻开了的牌都丢掉,继续一张张翻没翻开的牌;类似地,一旦出现连续三张牌恰好是黑黑红,则玩家 B 得一分,弃掉已翻开的牌后继续。

容易看到,加强版游戏相当于是重复多次的掷硬币游戏,因而毫无疑问,在这个新游戏中,玩家 A 的优势还会进一步放大。电脑计算显示, A 获胜的概率高达 93.54% , B 获胜的概率则只有可怜的 2.62% 。另外 3.84% 则是两人平手的概率。然而,即使是这样,这个游戏看上去也会给人一种公平的错觉!

这个例子告诉我们,在赌博游戏中,直觉并不是准确的,求助概率论是很有必要的。

其实,概率论的诞生本来就和赌博游戏是紧紧联系在一起的。提到概率论的诞生,不得不提一位名叫 Antoine Gombaud 的法国作家。这人出生于 1607 年法国西部的一个小城市,他并不是贵族出身,但他却有着“骑士”的光辉头衔——不过那只是他自封的而已。他借用了一个自己笔下的人物形象名称,自封为 de Méré 骑士。后来,这个名字便逐渐取代了他的真名 Antoine Gombaud 。不过, de Méré 骑士并没有凭借自己的文学作品名扬天下,真正让他声名远扬的是他的赌博才能。而足以让他在历史上留名的,则是他对一个赌博游戏的思考。

在 17 世纪,法国赌徒间流行着一个赌博游戏:连续抛掷一颗骰子 4 次,赌里面是否会出现至少一个 6 点。这个游戏一直被视为是一个公平的赌博游戏,直到 1650 年左右, de Méré 在另一个类似的游戏中莫名其妙地输得四个荷包一样重。当时, de Méré 参加了这个赌博游戏的一个“升级版”:把两颗骰子连续抛掷 24 次,赌是否会掷出一对 6 点来。

de Méré 自己做了一番思考。同时抛掷两颗骰子出现一对 6 ,比抛掷一颗骰子出现 6 点要困难得多,前者的概率是后者的 1/6 。要想弥补这个减小了的概率,我们应当把两颗骰子连续抛掷 6 次。为了追上连续抛掷 4 次骰子出现一个 6 的概率,则应当把两颗骰子抛掷 24 次才行。 de Méré 果断地得出结论:在升级版游戏中出现一对 6 的概率,与传统游戏中出现一个 6 的概率是相等的,升级版游戏换汤不换药,与原来的游戏本质完全一样。

不过,这毕竟是不严格的直觉思维,事实情况如何还得看实战。在以前的游戏中, de Méré 总是赌“会出现 6 点”,经验告诉他这能给他带来一些细微的优势。于是这一回, de Méré 也不断押“会出现一对 6”。不料,这次他却赔得多赚得少,最终输了个精光。

这是怎么一回事儿呢?作为一个业余数学家, de Méré 感到里面有玄机。但是,凭借自己的数学知识,他没有能力解决这个难题。无奈之下,他只好求助当时的大数学家 Blaise Pascal 。

Pascal 可是真资格的数学家。他很快便意识到,这种问题的计算不能想当然,事实和直觉的出入可能会相当大。比方说, de Méré 的直觉就是有问题的:重复多次尝试确实能增大概率,但这并不是成倍地增加。抛掷一颗骰子出现 6 点的概率为 1/6 ,但这并不意味着抛掷骰子 4 次会出现一个 6 点的概率就是 1/6 的 4 倍。无妨想一个更极端的例子:按此逻辑,抛掷一颗骰子 6 次,出现至少一次 6 点的概率似乎就该是 6/6 ,也即 100% ,但这显然是不对的。如果抛掷骰子 6 次以上,出现一个 6 点的概率就会超过 100% ,这就更荒谬了。

看来,概率不能简单地加加减减,每一步推理都要有凭有据。 Pascal 考虑了游戏中所有可能出现的情况,算出了在新旧两种版本的游戏中,会出现一个(或一对) 6 点的概率分别是多少。

连续抛掷 4 次骰子,总共会产生 64 ,也就是 1296 种可能。不过在这里面,一个 6 点都没有的情况共有 54 ,也就是 625 种。反过来,至少有一个 6 点就有 1296 – 625 = 671 种情况,它占所有情况的 671 / 1296 ≈ 51.77% ,恰好比 50% 高出那么一点点。看来, de Méré 的经验是对的——众人公认的公平游戏并不公平,赌 6 点会出现确实能让他有机可乘。

那么,连续抛掷两颗骰子 24 次,能出现一对 6 的概率又是多少呢?这回计算的工程量就有点大了。两颗骰子的点数有 36 种组合,连抛 24 次则会有 3624 ,大约是 2.245 × 1037 种情况。而 24 次抛掷中,从没产生过一对 6 点的情况数则为 3524 ,大约为 1.142 × 1037 。可以算出,如果赌 24 次抛掷里会出现一对 6 ,获胜的概率是 49.14% 。又一个非常接近 50% 的数,只不过这次是比它稍小一些。

原来,升级版游戏并不是换汤不换药。两种游戏胜率虽然接近,但正好分居 50% 两边。这看似微不足道的差别,竟害得我们的“骑士”马失前蹄。

后来,这个经典的概率问题就被命名为“de Méré 问题”。在解决这个问题的过程中, Pascal 提出了不少概率的基本原理。因此, de Méré 问题常被认为是概率论的起源。

当然, de Méré 的故事多少都有一些杜撰的成分,大家或许会开始怀疑,在现今世界里,有没有什么还能玩得到的“伪公平游戏”呢?答案是肯定的。为了吸引玩家,赌场想尽各种花样精心设计了一个个迷魂阵一般的赌局。在那些最流行的赌博游戏中,庄家一方总是会稍占便宜;但游戏规则设计得如此之巧妙,以至于乍看上去整个游戏是完全公平,甚至是对玩家更有利的。“骰子掷好运”(chuck-a-luck)便是一例。

“骰子掷好运”的规则看上去非常诱人。每局游戏开始前,玩家选择 1 到 6 之间的一个数,并下 1 块钱的赌注。然后,庄家同时抛掷三颗骰子。如果这三颗骰子中都没有你选的数,你将输掉那 1 块钱;如果有一颗骰子的点数是你选的数,那么你不但能收回你的赌注,还能反赢 1 块钱;如果你选的数出现了两次,你将反赢 2 块钱;如果三颗骰子的点数都是你选的数,你将反赢 3 块钱。用赌博的行话来说,你所押的数出现了一次、两次或者三次,对应的赔率分别是 1:1 、 1:2 、 1:3 。

用于抛掷三颗骰子的装置很有创意。它是一个沙漏形的小铁笼子,三颗骰子已经预先装进了这个笼子里。庄家“抛掷”骰子,就只需要把整个沙漏来个 180 度大回旋,倒立过来放置即可。因此,“骰子掷好运”还有一个别名——“鸟笼”(birdcage)。

18 世纪英国皇家海军的水手间流行过一种叫做“皇冠和船锚”(Crown and Anchor)的赌博游戏,其规则与“骰子掷好运”一模一样。唯一不同之处只是骰子而已。普通骰子的六个面分别是 1 点到 6 点,而“皇冠和船锚”所用骰子的六个面则是六种不同的图案——扑克牌的黑、红、梅、方,再加上皇冠和船锚两种图案。之后,“赌博风”又蔓延到了商船和渔船上,“皇冠和船锚”也就逐渐走出了皇家海军的圈子。一般认为,这也就是“骰子掷好运”的起源了。现在,很多赌场都提供了“骰子掷好运”的赌博项目。

对玩家而言,这个游戏看上去简直是在白送钱:用三颗骰子掷出 6 个数中的一个,怎么也会有一半的概率砸中吧,那玩家起码有一半的时间是在赚钱,应当是稳赚不赔呀。其实,这是犯了和 de Méré 一样的错误——一颗骰子掷出玩家押的数有 1/6 的概率,并不意味着三颗骰子同时抛掷就会有 3/6 的概率出现此数。在抛掷三颗骰子产生的所有 63 种情况中,玩家押的数一次没出现有 53 种情况,所占比例大约是 57.87% 。也就是说,大多数时候玩家都是在赔钱的。

不过,考虑到赚钱时玩家有机会成倍地赢钱,这能否把输掉的钱赢回来呢?一些更为细致的计算可以告诉我们,即使考虑到这一点,游戏对玩家仍然是不利的:平均每赌 1 块钱就会让玩家损失大约 8 分钱。不过,我们还有另一种巧妙的方法,无需计算便可看出这个游戏对玩家是不利的。

这显然是一个没有任何技巧的赌博游戏,不管押什么胜率都是一样的。因此,不妨假设有 6 名玩家同时在玩这个游戏,这 6 个人分别赌 6 个不同的点数。此时玩家联盟的输赢也就足以代表单个玩家的输赢了。

假设每个人都只下注 1 块钱。抛掷骰子后,如果三颗骰子的点数都不一样,庄家将会从完全没猜中点数的三个人手中各赚 1 块,但同时也会赔给另外三人各 1 块钱;如果有两颗骰子点数一样,庄家会从没猜中点数的四个人那里赢得共 4 块,但会输给另外两人 3 块;如果三颗骰子的点数全一样,庄家则会赢 5 块但亏 3 块。也就是说,无论抛掷骰子的结果如何,庄家都不会赔钱!虽然一轮游戏下来有的玩家赚了,有的玩家亏了,但从整体来看这 6 名玩家是在赔钱的,因此平均下来每个玩家也是在不断输钱的。


17.同时抛掷 6 颗骰子,出现下面哪种情况的可能性更大一些?

A.不同数字的个数恰好为 4 个
B.不同数字的个数为 1 、 2 、 3 、 5 或 6 个
C.上述两种情况的出现概率相同

这个题目的答案竟然是 A ,没想到吧!赌博游戏的胜率常常违反直觉,这道题目又是一个经典的例子。同时抛掷 6 颗骰子,一共会产生 66 = 46656 种情况。其中,不同数字的个数恰好为 4 个的情况有多少种呢?如果 6 颗骰子里只有 4 个不同的数字,那么有的数字出现了至少 2 次。事实上,各个数字出现的次数只有以下两种可能的分布类型:

  • 其中 1 个数字出现了 3 次,另外 3 个数字各出现了 1 次
  • 其中 2 个数字各出现了 2 次,另外 2 个数字各出现了 1 次。

前者一共有 C(6, 3) × C(6, 4) × 4! = 7200 种具体的情况,其中 C(6, 3) 表示出现了 3 次的数字究竟出现在了哪 3 次, C(6, 4) 表示这 4 个数字究竟是哪 4 个数字。后者一共有 C(6, 2) × C(4, 2) × C(6, 4) × 4! / 2 = 16200 种具体的情况,其中 C(6, 2) 表示第一个出现了 2 次的数字究竟出现在了哪 2 次, C(4, 2) 表示第二个出现了 2 次的数字究竟出现在了哪 2 次, C(6, 4) 表示这 4 个数字究竟是哪 4 个数字,最后的结果除以 2 的原因是,第一个出现了 2 次的数和第二个出现了 2 次的数有可能分别是我和你,也有可能分别是你和我,这被算重了。

因此,不同数字的个数恰好为 4 个的情况一共有 7200 + 16200 = 23400 种,它占总数的 23400 / 46656 ≈ 50.154321% 。


    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多