闪电风暴极光 / 待分类 / 小学数学必背定义定理公式

0 0

   

小学数学必背定义定理公式

2017-07-15  闪电风暴...

小学数学必背定义定理公式  

   

一、分数乘法概念总结
1.分数乘整数的意义和整数乘法的意义相同,就是求几个相同加数的和的简便运算。
   例如:×5的意义是:表示求5 的和是多少。
2.分数乘整数的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。    

   (为了计算简便,能约分的要先约分,然后再乘。)
3.一个数与分数相乘,可以看作是求这个数的几分之几是多少。
   例如:5× 的意义是:表示求5的 是多少。
4.分数乘分数的计算法则:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。  

(为了计算简便,可以先约分再乘。)
5乘积是1的两个数互为倒数。
6.求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。  

1的倒数是10没有倒数。)
真分数的倒数大于1;假分数的倒数小于或等于1
注意:倒数必须是成对的两个数,单独的一个数不能称做倒数。  

7一个数(0除外)乘以一个真分数,所得的积小于它本身。
8一个数(0除外)乘以一个假分数,所得的积大于或等于它本身。
9.如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小  

分数相乘的因数反而大。
例如: = b× = c× abc都不为0     

因为  <  ,所以b > a > c  

二、分数除法概念总结
1.分数除法的意义:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其  

中一个因数,求另一个因数的运算。
2.分数除法口诀:被除数不变,除号变乘号,除数变倒数。  

分数的除法则:除以一个数等于乘以这个数的倒数。
3.两个数相除又叫做两个数的比。比的前项除以后项所得的商,叫做比值。
4.比值通常用分数、小数和整数表示。
5比的后项不能为0。(分母不能为0,除数不能为0
6比同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商;
7.和分数比较,比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。
8.比的基本性质:比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。
9.一个数(0除外)除以一个真分数,所得的商大于它本身。
10.一个数(0除外)除以一个假分数,所得的商小于或等于它本身。
解分数(百分数)应用题注意事项:
1.找单位“ 1” 的方法:从含有分数的句子中找,后的规则。
   当句子中的单位“ 1” 不明显时,把原来的量看做单位“ 1” 
2.分数(百分数)应用题三种基本类型
   求比较量,用乘法       单位“ 1” ×分率=比较量 ; 
   求单位“ 1” ,用除法    比较量÷分率=单位“ 1” 
   求分率,用除法         比较量÷单位“ 1”  =分率
3.注意比较量与分率的对应:
   ①多的比较量对多的分率;           少的比较量对少的分率; 
   ③增加的比较量对增加的分率;       减少的比较量对减少的分率;
   ⑤提高的比较量对提高的分率;       降低的比较量对降低的分率;
   工作总量的比较量对工作总量的分率;   
   工作效率的比较量对工作效率的分率;
   部分的比较量对部分的分率;          
   总量(和)的比较量对总量(和)的分率;
4.单位“ 1” 不同的两个分率不能相加减,解应用题时应把题中的不变量做为单位“ 1”      

统一分率的单位“1”,然后再相加减。
5.单位“ 1” 的特点:   ①单位“ 1” 为分母;   单位“ 1” 为不变量。
三、圆概念总结
1、圆中心的一点,这一点叫做圆心。圆心一般用字母O表示。
2.半径:连接圆心到圆上任意一点的线段叫做半径。半径一般用字母r表示。把圆规两脚  

分开,两脚之间的距离就是圆的半径。
3.圆心确定圆的位置,半径确定圆的大小。
4.直径:通过圆心并且两端都在圆上的线段叫做直径。直径一般用字母d表示。
5.在同一个圆内,有无数条半径,所有的半径都相等,有无数条直径。所有的直径都相等。
7.在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。用字母表示为:  

d=2r      r  d÷2
8.圆的周长:围成圆的曲线的长度叫做圆的周长。
9.圆的周长总是直径的3倍多一些,这个比值是一个固定的数。我们把圆的周长和直径的  

比值叫做圆周率,用字母 表示。圆周率是一个无限不循环小数。在计算时,取 3.14  

世界上第一个把圆周率算出来的人是我国的数学家祖冲之。圆周率=π≈3.14
11.把一个圆切拼成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,宽相当  

于圆的半径,因为长方形的面积=×宽,所以圆的面积=πr×r=π²
12.在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。在一个长方形里画一个  

最大的圆,圆的直径等于长方形的宽。
15.环形的周长=外圆周长+内圆周长
16.半圆的周长等于圆的周长的一半加直径。公式:C=πd÷2d 或 C=πr2r
    注:半圆的周长不等于圆周长的一半。(圆周长的一半=πr
17.半圆面积=圆的面积÷2  公式为:S=π² ÷ 2
18.在同一个圆里,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。而面积    

扩大或缩小以上倍数的平方倍。
例如:在同一个圆里,半径扩大4倍,那么直径和周长就都扩大4倍,而面积扩大16倍。
19.两个圆的半径比等于直径比等于周长比,而面积比等于以上比的平方。如:  

两个圆的半径比是2︰3,那么这两个圆的直径比和周长比都是2︰3,面积比是4︰9。
20.当一个圆的半径增加a厘米时,它的周长就增加2πa厘米;
    当一个圆的直径增加a厘米时,它的周长就增加πa厘米。
21.当长方形,正方形,圆的周长相等时,圆的面积最大,长方形的面积最小。
22.轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就   

是轴对称图形。折痕所在的这条直线叫做对称轴。 
23.有1条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。
    2条对称轴的图形是:长方形
    3条对称轴的图形是:等边三角形
    4条对称轴的图形是:正方形
    有无数条对称轴的图形是:圆、同心圆环。
注意:平行四边形不是轴对称图形
24.直径所在的直线是圆的对称轴。
四、百分数概念总结
1.百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百  

分率或百分比。
2.百分数表示两个数之间的比率关系,不表示具体的数量,无单位名称。
3.百分数通常不写成分数形式,而在原来分子后面加上来表示。分子部分可为小数、  

整数,可以大于100,小于100或等于100
4.应纳税额:缴纳的税款叫应纳税额。
5.税率:应纳税额与各种收入的比率叫做税率。
6.应纳税额=各种收入×税率
7.本金:存入银行的钱叫做本金。
8.利息:取款时银行多支付的钱叫做利息。     

9.国家规定,存款的利息要按20%(现在是5%,应以题目为准)的税率纳税。 国债的利息不纳税。  

10.利率:利息与本金的比值叫做利率。(注意前、后项不要掉转)
    一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。      11.银行存款税后利息的计算公式:利息=本金×利率×时间×(1-20%)
12.国债利息的计算公式:利息=本金×利率×时间
13.本息:本金与利息的总和叫做本息。     

  

五、图形总结(几何知识  

(一)、直线、射线、线段
直线:没有端点,两边无限延长,无法度量。
射线:有一个端点,一边可以无限延长,无法度量。
线段:有两个端点,可以度量。
(二)、角
1、角的大小取决于角两边叉开的大小,与边的长短无关。
2、角的分类
   锐角:大于0度小于90    直角:等于90     钝角:大于90度小于180            

平角:等于180   1周角=2平角=4直角      周角:等于360  

(三)、三角形
1. 意义:由三条线段围成的图形叫做三角形。     
2. 特性:三角形具有稳定性。
3. 三角形的内角和为180°;直角三角形的两锐角之和为90°
4、三角形的分类:
按角分:①锐角三角形(三个角都是锐角)②直角三角形(有一个角是直角)  

钝角三角形(有一个角是钝角)
按边分:①等边三角形(三条边相等,三个角都是60度)②等腰三角形(两条边相等)  

不等边三角形(三条边都不相等)
(四)、四边形
1. 平行四边形:两组对边分别平行的四边形叫做平行四边形。  

(或有两组对边分别相等的四边形)  

(或有一组对边平行且相等的四边形)
2. 长方形:长方形是特殊的平行四边形,它的两组对边分别平行且相等,四个角都是直角。
3. 正方形:正方形是特殊的长方形,它的四条边都相等,四个角都是直角。
4. 梯形:只有一组对边平行的四边形叫做梯形。  

两腰相等的梯形叫做等腰梯形。  

有一个角是直角的梯形叫做直角梯形。
5. 四边形的四个内角和为360°
(五)、立体图形
1、正方体的特征:有6个面(都是全等的正方形),12条棱(长度都相等),8个顶点。
2、长方体的特征:有6个面(都是长方形,有可能两个面是正方形,相对面的面积相    

等),12 条棱(相对的棱长相等),8个顶点。
(正方体是一种特殊的长方体。当长方体的长、宽、高都相等时,即为正方体。)
3、圆柱的特征:上下底是相等的两个圆,有无数条高,条条相等,侧面是曲面,展开是一  

个长方形,长等于圆柱底面的周长,宽等于圆柱的高。
4、圆锥的特征:1个底面、1个顶点、一个侧面、1条高。底面是一个圆,顶点到底面圆心      

的距离是高,侧面展开得到一个扇形。它的体积是等底等高的圆柱体积的 。


(六)图形公式总结(几何形体的周长、面积、体积计算公式  

长方形的周长=(长+宽)×2                  公式C=a+b×2
正方形的周长=边长×4                       公式C= 4a 
三角形的面积=底×÷2                   公式S= a×h÷2
正方形的面积=边长×边长                    公式S= a×a
长方形的面积=长×                        公式S= a×b 
平行四边形的面积=底×                    公式S= a×h
梯形的面积=(上底+下底)×÷2            公式S=(a+b)h÷2
内角和:三角形的内角和=180度。        
多边形的内角和=(边数—2×180
长方体的体积=长××                    公式:V=abh                              长方体(或正方体)的体积=底面积×       公式V=abh 
正方体的体积=棱长×棱长×棱长              公式:V=aaa=a 
长方体的表面积=(长×+×+×高)×2  公式:S=(abacbc×2              正方体的表面积=棱长×棱长×6               公式:Sa×a×6= 6a 2                                圆的周长=直径×π半径×π            公式:CπdC2πr
圆的面积=半径×半径×π                    公式:Sπr2
环形面积=大圆面积小圆面积                 公式:S=πR-πr2
圆柱的侧面积=底面的周长×高。              公式:S=ch=πdh2πrh
圆柱的表面积=底面的周长×高﹢底面积×2   公式:S=ch+2s=ch+2πr2=2πrh+2πr2
圆柱的体积=底面积×高。                    公式:V=Sh=πr2h
圆锥的体积=底面积××                公式:V= Sh= πr2h
圆柱和圆锥的关系:等底等高: 圆柱的体积是圆锥体积的3倍;
                  等体积等高:圆柱的底面积是圆锥底面积的。
                  等体积等底;圆柱的高是圆锥高的。
平行线:同一平面内不相交的两条直线叫做平行线  

垂直:两条直线相交成直角,像这样的两条直线,我们就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。  

六、定义定理性质总结   

(一)、定律性质方面
1加法交换律:两数相加交换加数的位置,和不变。   abba
2加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。    ab)+ca+(bc
3减法的运算性质①一个数连续减去几个数,等于这个数减去几个数的和。                       

一个数连续减去几个数,可以将几个减数交换位置。
4乘法交换律:两数相乘,交换因数的位置,积不变。a×bb×a
5乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。(a×b)×ca×(b×c
6乘法分配律:两个数的和(差)同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加(减),结果不变。a×(bc)=a×ba×c  如:(2+4×52×5+4×5
7除法的运算性质①在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。②一个数连续除以几个数,等于这个数除以几个除数的积。例:90÷5÷690÷5×6     ③一个数连续除以几个数,可以将几个除数交换位置。                                ④ 0除以任何不是0的数都得0  

简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。  

7等式:等号左边的数值与等号右边的数值相等的式子叫做等式。  

等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。          8方程式:含有未知数的等式叫方程式。  

9一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。  学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。  

9比例:表示两个比相等的式子叫做比例。如3:69:18  

10比例的基本性质:在比例里,两个外项的积等于两个内项的积。
11解比例:求比例中的未知项,叫做解比例。如3:χ9:18
12代数:代数就是用字母代替数。
53代数式:用字母表示的式子叫做代数式。如:3x =ab+c  

13分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
14分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
15分数的基本性质:分数的分子和分母同时乘上或除以同一个数(0除外),分数的大小不变。
 比的基本性质:比的前项和后项同时乘上或除以一个相同的数(0除外),比值不变。
商不变的性质:被除数和除数同时乘上或除以同一个数(0除外),商不变。
16正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定) kx=y  

17反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。如:x×y = k( k一定) k / x = y  

(二)、数的概念和数的整除
1自然数:用来表示物体个数的整数,叫做自然数。0是最小的自然数。
2整数:自然数是整数的一部分,整数不止包括自然数,还有(负整数)
3分数:把单位“ 1” 平均分成若干份,表示这样的一份或几份的数,叫做分数。
4真分数:分子比分母小的分数叫做真分数。
5假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1
6带分数:把假分数写成整数和真分数的形式,叫做带分数。  

7、无限循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3. 141414……
纯循环小数:循环节从小数部分第一位开始的。
混循环小数:循环节不从小数部分第一位开始的。
8不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。如圆周率:3. 141592654  

9无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如π=3. 141592654┉┉
10把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小         

数化成百分数,只要把这个小数乘以100%就行了。
把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
11把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。
把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
12把小数化成分数,先看小数点后面有几位小数,就在1的后面添上几个0作分母,原来的小数去掉小数点作分子,能约分的要约成最简分数。
把分数化成小数,用分子除于分母。
13整除:数a除以数b,(ab是整数且b不为0)除得的商是整数而没有余数,就说能被b整除(或b能整除a)。除尽包含整除。如10÷2=5,就说10能被2整除,2能整除10
14约数、倍数:如果数a能被数b整除,b就叫做a的约数,a就是b的倍数。如:10÷2=5,就说210的约数,102的倍数。
15最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。(或几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做最大公约数。)
16最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
17互质数:公约数只有1的两个数,叫做互质数。
18通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)
19约分:把一个分数化成同它相等,分子、分母是互质的分数,叫做约分。(约分用最大公约数)
20最简分数:分子、分母是互质数的分数,叫做最简分数。
    分数计算到最后,得数必须化成最简分数。  

个位上是02468的数,都能被2整除,即能用2进行约分。  

个位上是0或者5的数,都能被5整除,即能用5进行约分。在约分时应注意利用。  

21偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。(0是自然数中最小的偶数)
22质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。(最小的质数是2
23合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,    

也不是合数。(最小的合数是4
24分解质因数:把一个合数用质因数相乘的形式表示出来。
   如:把12分解质因数:12=2×2×3 (不要写成2×2×3=12

  

(二)、数量关系计算公式方面                        
1、 每份数×份数=总数      总数÷每份数=份数       总数÷份数=每份数 
2 1 倍数×倍数=几倍数    几倍数÷ 1倍数=倍数    几倍数÷倍数= 1倍数 
3、 速度×时间=路程        路程÷速度=时间         路程÷时间=速度          4、 单价×数量=总价        总价÷单价=数量         总价÷数量=单价 
5、 单产量×数量=总产量    总产量÷单产量=数量     总产量÷数量=单产量      6、 比重×体积=重量         重量÷比重=体积         重量÷体积=比重
7、 工作效率×工作时间=工作总量                                               工作总量÷工作效率=工作时间        工作总量÷工作时间=工作效率               8、 图上距离:实际距离=比例尺                                                   9、 加数+加数=和          一个加数=和-另一个加数
10、被减数-减数=差        减数=被减数-差         被减数=减数+差     
11、因数×因数=积          一个因数=积÷另一个因数
12、被除数÷除数=商        除数=被除数÷商        被除数=商×除数   

13单位换算(单位间进率       

    长度单位换算 
       1 =10分米     1分米=10厘米     1厘米=10毫米
       1 =100厘米    1公里= 1千米  = 1000   

 面积单位换算 1平方千米= 1000000平方米  
      1平方千米=100公顷     1公顷=10000平方米        1=666.666平方米
      1平方米=100平方分米    1平方分米=100平方厘米    1平方厘米=100平方毫米        1平方千米=1000000平方米          

    ()积单位换算 
      1立方米=1000立方分米   1立方分米=1000立方厘米  1立方分米=1000毫升 
       1 =1立方分米          1毫升=1立方厘米         1立方米= 1000    

    重量单位换算 
      1=1000千克      1千克 = 1000       1千克 =1公斤    1公斤= 2市斤  

    人民币单位换算 
        1=10         1=10         1=100分   

时间单位换算 
        1世纪=100        1=12 
        大月(31)的有:     1\3\5\7\8\10\12 
        小月(30)的有:     4\6\9\11 
        平年228,      闰年 229 
        平年全年365,     闰年全年366 
        1=24小时        1小时=60 
        1=60          1小时=3600                                          

   

 14、解决问题中运用到的公式  

    和差问题的公式 
        (和+差)÷2=大数         (和-差)÷2=小数   

        和倍问题 
        和÷(倍数-1)=小数       小数×倍数=大数 (或者和-小数=大数)   

        差倍问题 
        差÷(倍数-1)=小数         小数×倍数=大数 (或 小数+差=大数)   

        植树问题 
        1、非封闭线路上的植树问题主要可分为以下三种情形
         ⑴如果在非封闭线路的两端都要植树,那么
           株数=段数+1=全长÷株距-
           全长=株距×(株数-1)         株距=全长÷(株数-1) 
         ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么
           株数=段数=全长÷株距 
           全长=株距×株数          株距=全长÷株数 
          

 ⑶如果在非封闭线路的两端都不要植树,那么
           株数=段数-1=全长÷株距-
           全长=株距×(株数+1)        株距=全长÷(株数+1)                                                         1       2、封闭线路上的植树问题的数量关系如下 
           株数=段数=全长÷株距 
           全长=株距×株数        株距=全长÷株数   

        盈亏问题 
        (盈+亏)÷两次分配量之差=参加分配的份数 
        (大盈-小盈)÷两次分配量之差=参加分配的份数 
        (大亏-小亏)÷两次分配量之差=参加分配的份数   

        行程问题通常可以分为这样几类                                         相遇问题 
相遇路程=速度和×相遇时间 
相遇时间=相遇路程÷速度和     速度和=相遇路程÷相遇时间   

        追及问题 
        追及距离=速度差×追及时间 
        追及时间=追及距离÷速度差     速度差=追及距离÷追及时间  

        流水问题   关键是抓住水速对追及和相遇的时间不产生影响   

顺流速度=静水速度+水流速度    顺水速度=船速+水速
        逆流速度=静水速度-水流速度    逆水速度=船速-水速
        静水速度=(顺流速度+逆流速度)÷2    水流速度=(顺流速度-逆流速度)÷2                                           (也就是顺水速度、逆水速度、船速、水速4个量中只要有2个就可求另外2个)   

        环形行程:抓住往返过程中不变的关系                                            比例应用:运用比例知识解决复杂的行程问题。                                    复杂行程:包括多次相遇、火车过桥、二维行程等。  

 浓度问题 
        溶质的重量+溶剂的重量=溶液的重量 
        溶质的重量÷溶液的重量×100%=浓度 
        溶液的重量×浓度=溶质的重量       溶质的重量÷浓度=溶液的重量   

        利润与折扣问题 
        利润=售出价-成本 
        利润率=利润÷成本×100%(售出价÷成本-1)×100% 
        涨跌金额=本金×涨跌百分比 
        折扣=实际售价÷原售价×100%(折扣<1) 
        利息=本金×利率×时间 
        税后利息=本金×利率×时间×(120%) 

七、统计图
1、用统计图表示有关数量之间的关系,比统计表更加形象具体,使人一目了然,印象深刻。
2、常见的统计图有条形统计图、折线统计图和扇形统计图。
3、条形统计图:是用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,  然后把这些直条按照一定的顺序排列起来。(作用:从条形统计图中很容易看出各种数量的多少)
4、折线统计图:是用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来。(作用:折线统计图不但可以表示出数量的多少,而且能够清楚地表示出数量增减变化的情况。)  

   

运算定律共有五个:加法交换律、加法结合律、乘法交换律、乘法结合律、乘法分配律。      要求在理解的基础上掌握,并能灵活运用。                                        

运算性质指:一个数加上两个数的差;一个数减去两个数的和;一个数减去两个数的差;    一个数乘以两个数的商;一个数除以两个数的积;一个数除以两个数的商;   几个数的和除以一个数等。这部分内容只是用于简便运算。  

运算法则包括:整数四则运算法则、小数四则运算法则、分数四则运算法则。              要求在理解的基础上掌握法则,并能运用法则熟练地进行计算。  

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。如发现有害或侵权内容,请点击这里 或 拨打24小时举报电话:4000070609 与我们联系。

    猜你喜欢

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多
    喜欢该文的人也喜欢 更多