分享

冲击2018年中考数学, 专题复习35: 函数探究类综合题型

 西窗竹影 2018-04-13

如图,已知抛物线y=x2﹣2bx﹣3(b为常数,b<0).

发现:(1)抛物线y=x2﹣2bx﹣3总经过一定点,定点坐标为       ;

(2)抛物线的对称轴为直线x=    (用含b的代数式表示),位于y轴的    侧.

思考:若点P(﹣2,﹣1)在抛物线y=x2﹣2bx﹣3上,抛物线与反比例函数y=k/x(k>0,x>0)的图象在第一象限内交点的横坐标为a,且满足2<a<3,试确定k的取值范围.

探究:设点A是抛物线上一点,且点A的横坐标为m,以点A为顶点做边长为1的正方形ABCD,AB⊥x轴,点C在点A的右下方,若抛物线与CD边相交于点P(不与D点重合且不在y轴上),点P的纵坐标为﹣3,求b与m之间的函数关系式.

考点分析:

二次函数综合题.

题干分析:

解:(1)抛物线与y轴的交点为定点;当x=0时,y=x2﹣2bx﹣3=﹣3,

所以抛物线经过定点(0,﹣3);

(2)利用抛物线的对称轴方程得到抛物线的对称轴为直线x=b,然后利用b的范围确定抛物线的对称轴在y轴的左侧;

思考:把P点坐标代入y=x2﹣2bx﹣3得b=﹣1,则抛物线解析式为y=x2+2x﹣3,再分别计算出a=2和a=3所对应的二次函数值,从而确定反比例函数与抛物线的交点的位置,然后利用反比例函数图象上点的坐标特征确定k的范围;

探究:设A(m,m2+2m﹣3),利用正方形的性质得D(m+1,m2+2m﹣3),则P点的坐标为(m+1,﹣3),然后把P(m+1,﹣3)代入y=x2﹣2bx﹣3可得到b与m的关系式.

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多