分享

高中数学圆锥曲线解题策略:7种常用的求动点的轨迹方程的方法

 江海一声笑 2018-04-25

求动点的轨迹方程的方法有7种

高中数学圆锥曲线解题策略:7种常用的求动点的轨迹方程的方法

第一、直接法,性质法

这类方法最常见,一般设置为第一问,题干中给出圆锥曲线的类型,并给出部分性质,比如离心率,焦点,端点等,根据圆锥曲线的性质求解a,b。

第二、定义法

定义法的意思呢,就是题目中给出的条件其实是某种我们学过的曲线的定义,这种情况下,可以根据题目描述,确定曲线类型,再根据曲线的性质,确定曲线的参数。各曲线的定义如下:

到定点的距离为定值的动点轨迹为圆;

到两个定点的距离之和为定值的动点轨迹为椭圆;

到两个定点的距离之差为定值的动点轨迹为双曲线;

到定点与定直线的距离之比为定值的动点轨迹为圆锥曲线,根据比值大小确定是哪一种曲线

高中数学圆锥曲线解题策略:7种常用的求动点的轨迹方程的方法

第三、直译法

顾名思义,就是直接翻译题目中的条件。将题目中的文字用数学方程表达出来即可。

高中数学圆锥曲线解题策略:7种常用的求动点的轨迹方程的方法

第四、相关点法

假如题目中已知动点P的轨迹,另外一个动点M的坐标与P有关系,可根据此关系,用M的坐标表示P的坐标,再带入P的满足的轨迹方程,化简即可得到M的轨迹方程。

高中数学圆锥曲线解题策略:7种常用的求动点的轨迹方程的方法

第五、参数法

当动点坐标x、y之间的直接关系难以找到时,可以先找到x、y与另一参数t的关系,得再消去参变数t,得到轨迹方程。

高中数学圆锥曲线解题策略:7种常用的求动点的轨迹方程的方法

第六、交轨法

若题目中给出了两个曲线,求曲线交点的轨迹方程时,应将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程。

高中数学圆锥曲线解题策略:7种常用的求动点的轨迹方程的方法

第七、点差法

只要是中点弦问题,就用点差法。

高中数学圆锥曲线解题策略:7种常用的求动点的轨迹方程的方法

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多