骨折地图及其应用 骨折线地图描绘技术(fracture mapping)是通过计算机影像模拟,将多个病例的骨折线叠加于一个骨骼模型上,从而对骨折形态进行再显示的方法。其特点是可以将某一骨折的「大数据」直观地展现出来,包括骨折线起止、走向、分布、骨折类型、粉碎程度及关节面缺损等信息,使医生对骨折的整体形态有更加直观、立体的认识,为临床治疗提供更丰富的信息及更直接的指导。 骨折地图提出至今,也在多个骨科专业领域中进行了实际应用:
在这一过程中,研究也从单纯展示骨折线分布,发展到展示骨折频数的heat mapping。从骨折线二维绘制、CT断层复位发展到三维重建复位。 外侧壁骨折地图 2017年,本文作者团队利用骨折地图技术方法,对不稳定股骨转子间骨折外侧壁的骨折线分布地图,进行了描述性研究:
研究中,纳入A2及A3型的转子间骨折75例,其中:
对外侧壁解剖数据进行测量,结果显示:
从结果来看:
外侧壁骨折地图研究的意义
统计学大数据在骨折线分布上的应用,使医生对骨折的整体形态有更加直观、立体的认识,为临床治疗提供更丰富的信息及更直接的指导。
股骨近端骨折的实验室研究一般通过建立的生物力学或计算机有限元模型的方法研究标本特征,但缺乏标准的股骨粗隆骨折外侧壁受损模型,有学者在试验中将外侧壁骨折线分为三类,有的则设计为横行。 通过骨折地图技术,量化了外侧壁缺损平均高度、平均宽度以及骨折线走形,并明确了骨折线权重最高的区域。在未来的生物力学及有限元分析研究中,研究的结果可作为实验室建模的标准。 参考文献: [1] 张英琪,张世民,熊文峰等.股骨近端外侧壁的骨折特征地图研究.中国临床解剖学杂志,2017,35(2):121-125 [2] Armitage BM, Wijdicks CA, Tarkin IS, et al. Mapping of scapular fractures with three-dimensional computed tomography. Journal Of Bone And JointSurgery-American Volume. 2009; 91: 2222-2228. [3] Cole PA, Mehrle RK, Bhandari M, et al. The pilon map: fracture lines and comminution zones in OTA/AO type 43C3 pilon fractures. Journal of orthopaedic trauma. 2013; 27: e152-156. [4] Molenaars RJ, Mellema JJ, Doornberg JN, et al. Tibial Plateau Fracture Characteristics: Computed Tomography Mapping of Lateral, Medial, and Bicondylar Fractures. Journal Of Bone And Joint Surgery-American Volume. 2015; 97: 1512-1520. [5] Mellema JJ, Eygendaal D, van Dijk CN, et al. Fracture mapping of displaced partial articular fractures of the radial head. Journal of shoulder and elbowsurgery. 2016; 25: 1509-1516. [6] VanBerkel S, Bijl B, Den Hollander J, et al. Computer Assisted Surgical Anatomy Mapping. 2009. [7] Zhang YQ, Chang SM, Huang YG, et al. The femoral neck safe zone: a radiographic simulation study to prevent cortical perforation with multiple screw insertion. Journal of orthopaedic trauma. 2015; 29: e178-182. [8] Luo Q, Yuen G, Lau TW, et al. A biomechanical study comparing helical blade with screw design for sliding hip fixations of unstable intertrochanteric fractures. The Scientific World Journal. 2013; 2013: 351936. [9] Im GI, Shin YW, Song YJ. Potentially unstable intertrochanteric fractures. Journal of Orthopaedic Trauma. 2005; 19: 5-9. [10] Palm H, Jacobsen S, Sonne-Holm S, et al. Integrity of the lateral femoral wall inintertrochanteric hip fractures: an important predictor of a reoperation. Journal of Bone & Joint Surgery American Volume. 2007; 89: 470-475. [11] Gotfried Y. The lateral trochanteric wall: a key element in the reconstruction of unstable pertrochanteric hip fractures. Clinical Orthopaedics & RelatedResearch. 2004; 425: 82-86. [12] Haq RU, Manhas V, Pankaj A, et al. Proximal femoral nails compared with reverse distal femoral locking plates in intertrochanteric fractures with a compromised lateral wall; a randomised controlled trial. International orthopaedics. 2014; 38: 1443-1449. [13] Ma Z, Chang SM. Letter to the Editor: Where is the lateral femoral wall? International Orthopaedics. 2014; 38: 2645-2646. [14] 张世民,祝晓忠,黄轶刚等. 外侧壁危险型股骨粗隆间骨折DHS与PFNA治疗的回顾性对比研究. 中国矫形外科杂志. 2010; 18: 1868-1872. [15] Lubberts B, Mellema JJ, Janssen SJ, et al. Fracture line distribution of olecranon fractures. Archives of Orthopaedic & Trauma Surgery. 2016:1-6. [16] Marmor M, Elliott IS, Marshall ST, et al. Biomechanical comparison of long, short, andextended-short nail construct for femoral intertrochanteric fractures. Injury. 2015; 46: 963-969. [17] Fensky F, Nuchtern JV, Kolb JP, et al. Cement augmentation of the proximal femoral nail antirotation for the treatment of osteoporotic pertrochanteric fractures--a biomechanical cadaver study. Injury. 2013; 44: 802-807. [18] Krischak GD, Augat P, BeckA, et al. Biomechanical comparison of two side plate fixation techniques in anunstable intertrochanteric osteotomy model: Sliding Hip Screw and Percutaneous Compression Plate. 2007; 22: 1112-1118. — END — |
|