由中点想到的辅助线口诀: 三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。 在三角形中,如果已知一点是三角形某一边上的中点,那么首先应该联想到三角形的中线、中位线、加倍延长中线及其相关性质(直角三角形斜边中线性质、等腰三角形底边中线性质),然后通过探索,找到解决问题的方法。 (一)、中线把原三角形分成两个面积相等的小三角形 即如图1,AD是ΔABC的中线,则SΔABD=SΔACD=SΔABC的一半(因为ΔABD与ΔACD是等底同高的)。 例1.如图2,ΔABC中,AD是中线,延长AD到E,使DE=AD,DF是ΔDCE的中线。已知ΔABC的面积为2,求:ΔCDF的面积。 解:因为AD是ΔABC的中线,所以 又因CD是ΔACE的中线,故SΔCDE=SΔACD=1, 因DF是ΔCDE的中线,所以 ∴ΔCDF的面积为 (二)、由中点应想到利用三角形的中位线 例2.如图3,在四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,BA、CD的延长线分别交EF的延长线G、H。求证:∠BGE=∠CHE。 证明:连结BD,并取BD的中点为M,连结ME、MF, ∵ME是ΔBCD的中位线, ∴ME平行且等于CD的一半,∴∠MEF=∠CHE, ∵MF是ΔABD的中位线, ∴MF平行且等于AB的一半,∴∠MFE=∠BGE, ∵AB=CD,∴ME=MF,∴∠MEF=∠MFE, 从而∠BGE=∠CHE。 (三)、由中线应想到延长中线 例3.图4,已知ΔABC中,AB=5,AC=3,连BC上的中线AD=2,求BC的长。 解:延长AD到E,使DE=AD,则AE=2AD=2×2=4。 在ΔACD和ΔEBD中, ∵AD=ED,∠ADC=∠EDB,CD=BD, ∴ΔACD≌ΔEBD,∴AC=BE, 从而BE=AC=3。 在ΔABE中,因AE2+BE2=42+32=25=AB2,故∠E=90°, 例4.如图5,已知ΔABC中,AD是∠BAC的平分线,AD又是BC边上的中线。 求证:ΔABC是等腰三角形。 证明:延长AD到E,使DE=AD。 仿例3可证: ΔBED≌ΔCAD, 故EB=AC,∠E=∠2, 又∠1=∠2, ∴∠1=∠E, ∴AB=EB,从而AB=AC,即ΔABC是等腰三角形。 (四)、直角三角形斜边中线的性质 例5.如图6,已知梯形ABCD中,AB//DC,AC⊥BC,AD⊥BD,求证:AC=BD。 证明:取AB的中点E,连结DE、CE,则DE、CE分别为RtΔABD,RtΔABC斜边AB上的中线,故DE=CE=AB,因此∠CDE=∠DCE。 ∵AB//DC, ∴∠CDE=∠1,∠DCE=∠2, ∴∠1=∠2, 在ΔADE和ΔBCE中, ∵DE=CE,∠1=∠2,AE=BE, ∴ΔADE≌ΔBCE,∴AD=BC,从而梯形ABCD是等腰梯形,因此AC=BD。 (五)、角平分线且垂直一线段,应想到等腰三角形的中线 例6.如图7,ΔABC是等腰直角三角形,∠BAC=90°,BD平分∠ABC交AC于点D,CE垂直于BD,交BD的延长线于点E。求证:BD=2CE。 证明:延长BA,CE交于点F,在ΔBEF和ΔBEC中, ∵∠1=∠2,BE=BE,∠BEF=∠BEC=90°, ∴ΔBEF≌ΔBEC,∴EF=EC,从而CF=2CE。 又∠1+∠F=∠3+∠F=90°,故∠1=∠3。 在ΔABD和ΔACF中,∵∠1=∠3,AB=AC,∠BAD=∠CAF=90°, ∴ΔABD≌ΔACF,∴BD=CF,∴BD=2CE。 注:此例中BE是等腰ΔBCF的底边CF的中线。 (六)中线延长 口诀:三角形中有中线,延长中线等中线。 题目中如果出现了三角形的中线,常延长加倍此线段,再将端点连结,便可得到全等三角形。 例一:如图4-1:AD为△ABC的中线,且∠1=∠2,∠3=∠4,求证:BE+CF>EF。 证明:廷长ED至M,使DM=DE,连接CM,MF。在△BDE和△CDM中, BD=CD(中点定义) ∠1=∠5(对顶角相等) ED=MD(辅助线作法) ∴△BDE≌△CDM(SAS) 又∵∠1=∠2,∠3=∠4(已知) ∠1+∠2+∠3+∠4=180°(平角的定义) ∴∠3+∠2=90° 即:∠EDF=90° ∴∠FDM=∠EDF=90° 在△EDF和△MDF中 ED=MD(辅助线作法) ∠EDF=∠FDM(已证) DF=DF(公共边) ∴△EDF≌△MDF(SAS) ∴EF=MF(全等三角形对应边相等) ∵在△CMF中,CF+CM>MF(三角形两边之和大于第三边) ∴BE+CF>EF 上题也可加倍FD,证法同上。 注意:当涉及到有以线段中点为端点的线段时,可通过延长加倍此线段,构造全等三角形,使题中分散的条件集中。 例二:如图5-1:AD为△ABC的中线,求证:AB+AC>2AD。 分析:要证AB+AC>2AD,由图想到:AB+BD>AD,AC+CD>AD,所以有AB+AC+BD+CD>AD+AD=2AD,左边比要证结论多BD+CD,故不能直接证出此题,而由2AD想到要构造2AD,即加倍中线,把所要证的线段转移到同一个三角形中去 证明:延长AD至E,使DE=AD,连接BE,CE ∵AD为△ABC的中线(已知) ∴BD=CD(中线定义) 在△ACD和△EBD中 BD=CD(已证) ∠1=∠2(对顶角相等) AD=ED(辅助线作法) ∴△ACD≌△EBD(SAS) ∴BE=CA(全等三角形对应边相等) ∵在△ABE中有:AB+BE>AE(三角形两边之和大于第三边) ∴AB+AC>2AD。 |
|
来自: 昵称32937624 > 《待分类》