家有学子 / 数学 / 几道有关初中三角形的综合应用题

0 0

   

几道有关初中三角形的综合应用题

2020-01-12  家有学子

综合题1

如图,将△ABC沿着射线BC方向平移至△A′B′C′,使点A′落在∠ACB的外角平分线CD上,连结AA′.
(1)判断四边形ACC′A′的形状,并说明理由;
(2)在△ABC中,∠B=90°,AB=8,cos∠BAC=4/5,求CB′的长.

综合题2
如图,已知,A为∠POQ的边OQ上的一点,OA=2,以A为顶点的∠MAN的两边分别交射线OP于M、N两点,且∠MAN=∠POQ=60°,当∠MAN以点A为旋转中心,AM边从与AO重合的位置开始,按逆时针方向旋转(∠MAN保持不变)时,M、N两点在射线OP上同时以不同的速度向右平行移动,设OM=x,ON=y(y>x≥0).
(1)求证:AN2=ON·MN;
(2)当∠MAN旋转30°(即∠OAM=30°)时,求点N移动的距离;
(3)求y与x之间的函数关系式及自变量x的取值范围.

综合题3
如图,在菱形ABCD中,∠B=60°,点E、F分别从点B、D出发以同样的速度沿边BC、DC向点C运动.给出以下四个结论:
①AE=AF;
②∠CEF=∠CFE;
③当点E,F分别为边BC,DC的中点时,△AEF是等边三角形;
④当点E,F分别为边BC,DC的中点时,△AEF的面积最大.
上述结论中正确的序号有.(把你认为正确的序号都填上)

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。如发现有害或侵权内容,请点击这里 或 拨打24小时举报电话:4000070609 与我们联系。

    猜你喜欢

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多
    喜欢该文的人也喜欢 更多