中国医师协会胰腺病学专业委员会 通信作者:李兆申,海军军医大学第一附属医院消化内科,上海200433,Email:zhsl@vip.163.com; 金震东,海军军医大学第一附属医院消化内科, 上海200433,Email:zhendjin@126.com;李汛,兰州大学第一医院外科,兰州730013,Email:lxdr21@126.com 胰腺囊性肿瘤(pancreatic cystic neoplasm,PCN)是指源于胰腺导管上皮和(或)间质组织的囊性肿瘤性病变,主要包括黏液性囊性肿瘤(mucinous cystic neoplasm,MCN)、导管内乳头状黏液性肿瘤(intraductal papillary mucinous neoplasm,IPMN)、浆液性囊腺瘤(serous cystic neoplasm,SCN)、实性假乳头状肿瘤(solid pseudopapillary neoplasm,SPN)和囊性神经内分泌肿瘤(cystic neuroendocrine tumour,cNET)。部分PCN存在恶变为胰腺导管腺癌的风险,因此其鉴别诊断具有重要的临床意义。对PCN患者进行随访的主要目的是缓解临床症状和(或)预防恶性肿瘤发生,同时避免临床上的过度治疗。现国际上基于PCN症状和肿瘤风险的监测及手术指征的指南主要包括2015年美国胃肠病学会(2015 AGA)指南[1]、2017年国际胰腺病学会(2017 IAP)指南[2]、2018年欧洲胰腺囊性肿瘤研究小组(2018 ESG)指南[3]和2018年美国胃肠病学院(2018 ACG)指南[4];但上述国际指南在我国应用尚存在诸多现实问题,而国内缺乏相应指南或共识,导致PCN临床诊断标准不一、缺乏规范的问题较为突出。为此,由国家消化病临床医学研究中心(上海)和中国医师协会胰腺病学专业委员会牵头,组织消化内镜、胰腺外科和影像介入等领域的专家,依据已发表的国内外文献,并结合专家意见,采用改良Delphi法,通过多轮投票与集体讨论的方式,根据PCN临床症状、影像或内镜诊断以及随访策略等12个临床问题,共提出了17条推荐意见(表1)。由海军军医大学第一附属医院消化内科成立指南起草小组对指南进行起草和修订,最终制订了本指南。本指南基于推荐意见分级的评估、制定及评价(grading of recommendation assessment,development and evaluation,GRADE)方法,将证据质量分为高(A)、中(B)、低(C)、极低(D)4个等级,将推荐意见分为强、弱2个级别。 大多数PCN无症状,需谨慎地将症状归结于PCN所致。(证据质量:D;推荐强度:弱) 大多数PCN为偶然发现,且约51.1%患者缺乏典型的胰腺疾病相关症状如腹痛、黄疸和血糖异常[5⁃7]。腹痛的发生可能与主胰管受累的IPMN产生大量黏蛋白有关。这些患者的主胰管可因黏蛋白堵塞进而产生胰腺炎,引起上腹部不适、急性腹痛伴腰背部放射痛以及血清淀粉酶升高等。进行性的炎症改变也可导致胰腺永久性结构损伤,使得其内分泌和外分泌功能受损。继发于主胰管阻塞和纤维化的胰腺萎缩会产生内分泌和外分泌不足。PCN还可对胆总管产生外源性压迫导致胆汁流出道梗阻,产生黄疸。黄疸还可继发于黏蛋白堵塞胆总管或肿瘤直接侵犯胆总管。黄疸和腹痛的发生主要与晚期肿瘤有关,但亦可发生于恶性程度低的PCN患者中。 表1 中国胰腺囊性病灶诊断共识问题及推荐意见
注:PCN为胰腺囊性肿瘤;EUS为超声内镜检查术;EUS‑FNA/FNB为超声内镜引导下细针穿刺抽吸/活检;EUS‑TTNB为超声内镜引导经穿刺针活检钳活检术;nCLE为细针型共聚焦激光显微内镜;CE‑EUS为对比增强EUS;MD‑IPMN为主胰管型胰腺导管内乳头状黏液性肿瘤;MT‑IPMN为混合型胰腺导管内乳头状黏液性肿瘤;MRI为磁共振成像;MCN为黏液性囊腺瘤;SCN为浆液性囊腺瘤;MRCP为磁共振胰胆管造影 大部分偶发性PCN患者无明显症状,但在外科手术病例中有症状PCN患者的比例较高,为50%~84%[5,7⁃8],其中产黏液PCN是最常见类型[9]。一项纳入了13项研究的荟萃分析评估了症状和IPMN恶变的关系[10],显示症状和IPMN恶变之间的相关性较弱(OR=1.6,95%CI:1.0~2.6)。一项纳入134例手术患者的研究结果显示,PCN最常见症状为腹痛(69%),其次为体重减轻(38%)、胰腺炎(36%)、黄疸(18%)、背痛(18%)、腹部包块(5%)和餐后饱胀(4%)[5]。在这些PCN手术患者当中,44%发生胰腺炎,且最初被误诊为假性囊肿,提示PCN可引起急性胰腺炎,因此对于40岁以上患有急性胰腺炎和囊肿的患者需谨慎评估。 大多数PCN不引起症状,因此针对非特异性症状需要仔细地进行临床鉴别。2018年ACG指南指出,应谨慎地将症状归因于PCN所致[4]。本指南建议患者症状和体征是PCN患者初诊的重要依据,但其诊断准确性较低,不建议仅根据症状和体征来诊断PCN,应结合其他诊断工具或手段综合判断。 MRI检查是诊断PCN的首选方法。(证据质量:A;推荐级别:强) 无论肿瘤内为黏液或者浆液,P0CN均为液体成分。MRI的T2加权成像(T2 weighted imaging,T2WI)对液体成分极为敏感,表现为高信号,增加了PCN阳性检出率。其次,MRI另一个优势序列是磁共振胰胆管成像(magnetic resonance cholangiopancreatography,MRCP),其利用水的长T2特性,采用T2权重极重的T2WI序列,即选择较长的回波时间(500 ms以上),所采集图像的信号来自于水样结构,主要显示胰管、胆管及其分支结构等,是判断PCN与胰管关系的最佳序列。其中三维MRCP(3D⁃MRCP)扫描还可通过后期重建,充分显示病变与胰管关系,有利于分支胰管型IPMN与其他PCN的鉴别。再次,MRI具有较好的软组织分辨度,尤其是T1加权成像(T1 weighted imaging,T1WI),对发现PCN内的壁结节具有较强的优势,结合对比剂注射后的强化特征,可以判断PCN是否有恶变倾向。最后,MRI中的弥散加权成像(diffusion weighted imaging,DWI)是一种无创性评价生物体内水分子扩散运动状态的成像技术,它为组织成像对比提供了新的角度和技术,对判断PCN有无恶变倾向提供有力证据,是SCN与胰腺神经内分泌肿瘤鉴别的重要序列。 多项研究结果表明[11⁃33],CT诊断PCN的准确率为39%~61.4%,MRI诊断PCN的准确率为50%~86%;在PCN良恶性鉴别方面,CT的准确率为61.9%~80%,MRI的准确率为55.6%~87%;PET⁃CT诊断恶性囊性病变的灵敏度为85.7%~100%,准确率为88%~95%。另外,2021年一项纳入17项研究的荟萃分析结果显示,MRI和CT鉴别PCN良恶性的灵敏度(P=0.822)和特异度(P=0.096)差异均无统计学意义。两项针对观察者间一致性的研究结果显示,MRI在区分不同类型PCN方面的观察者间一致性为中等[19,34]。同时,不同的研究结果表明,MRI联合CT相比任何单一影像学检查可增加PCN诊断的准确率[13,22]。考虑到CT和MRI目前在我国各级医疗单位较为普及且费用经济,因此亦推荐有条件的单位可联合多种影像学手段评估PCN,以增加其诊断准确率。 影像学如提示存在肿瘤最大径≥3 cm、壁结节>5 mm、囊壁增厚或强化、主胰管扩张>5 mm、胰管截断伴远侧胰腺萎缩、淋巴结肿大、CA19⁃9升高、肿瘤增长速度≥5 mm/2年等高危征象时,建议行EUS进一步评估。(证据质量:D;推荐级别:弱) EUS联合其他影像学检查可提高PCN的诊断准确率。(证据质量:D;推荐级别:弱) EUS可实时动态近距离对PCN进行精细扫查,能够较好地显示分隔、壁结节等囊腔内结构以及血流情况,并可经超声内镜引导下细针穿刺抽吸/活检(EUS⁃guided fine needle aspiration/biopsy,EUS⁃FNA/FNB)行囊液细胞学及生物化学分析,对PCN的诊断和鉴别诊断具有重要意义。如PCN具有可疑或高危的临床或影像学征象(即壁结节、胰管扩张或囊壁增厚伴强化),则EUS可作为其他影像学检查的辅助手段,以指导患者的个体化治疗。因EUS为侵入性检查,因此不建议将EUS作为诊断明确且无相关高危征象囊肿的首选检查方法。 研究表明,EUS鉴别良恶性PCN的准确率与MRI和CT相当(65%~96%)[35⁃36];而多项研究显示EUS相比其他影像学技术如MRI或CT在诊断诸如壁结节、分隔等方面更有优势[12,14,35]。一项多中心的前瞻性观察性研究发现,当MRI和EUS联用时,相比单独使用任一种检查方式对鉴别IPMN或MCN合并恶变的灵敏度更高[37]。另一项更大规模的回顾性研究显示,当EUS联合使用CT或MRI时可增加诊断的准确率[17]。而2021年一项纳入17项研究的荟萃分析显示在鉴别PCN良恶性方面,EUS(75%)相比MRI(80%)的特异度较低[33]。2017年IAP指南指出影像学提示存在担忧特征(worrisome feature)的PCN患者建议行EUS评估。本指南建议对具有高危征象的PCN可行EUS评估。EUS联合不同影像学检查可提高PCN的诊断准确率。 对于影像学检查不能确定性质的PCN或EUS⁃FNA/FNB可能改变治疗策略时,建议行EUS⁃FNA/FNB。(证据质量:C;推荐级别:弱) 迄今为止,各指南对于PCN行EUS⁃FNA/FNB的适应证并未统一。2015年AGA发布的指南推荐对于至少有2项恶性高危因素的PCN行EUS⁃FNA[1]。2018年ESG指南将EUS⁃FNA在可能改变PCN治疗策略的情况下则定义为适应证[3];而影像学诊断明确或有外科手术适应证的PCN则不应行EUS⁃FNA。2018年ACG指南推荐PCN诊断不明、而EUS⁃FNA可改变疾病诊断时行EUS⁃FNA[4]。一项纳入40项研究、共5 124例PCN患者的荟萃分析认为EUS⁃FNA是诊断PCN的安全的方法,且不良事件发生率相对较低,仅为2.66%,且大多数不良事件为轻微的、自限性的,不需要医疗干预[38]。另一项多中心、随机、非劣效性临床研究认为,接受EUS⁃FNA的PCN患者感染风险较低。与未使用预防性抗生素的患者比较,感染发生率差异无统计学意义[39]。综合以上证据及《中国内镜超声引导下细针穿刺抽吸/活检术应用指南(2021,上海)》[40],本指南推荐影像学检查如CT、MRI或EUS难以明确PCN性质的情况下,且EUS⁃FNA/FNB可以改变治疗策略时则考虑行EUS⁃FNA/FNB。 囊液分析如拉丝试验、细胞学指标、淀粉酶、CEA、葡萄糖检测及KRAS/GNAS基因突变分析可用于鉴别PCN类型。(证据质量:C;推荐级别:弱) 通过EUS⁃FNA可获取PCN囊液,囊液拉丝试验、生物化学指标分析、肿瘤标志物检测、基因分子检测等有助于明确病变性质和分型及鉴别病变良恶性。 拉丝试验是鉴别黏液性和非黏液性PCN的一项操作简单方便的方法。黏液性PCN通常含有高度黏稠的囊液[41⁃44]。该试验即在拇指和食指之间放置一滴囊液并拉伸,如囊液拉长>3.5 mm提示拉丝试验阳性,即PCN为黏液性,其灵敏度和特异度分别为58%和95%[42⁃43]。拉丝试验的缺陷主要是观察者间一致性存在较大差异[45]。 EUS⁃FNA囊液细胞学分析可提高PCN诊断的准确率[46],但诊断灵敏度低,即使在脱落细胞中未检出恶性肿瘤细胞,也不可能完全排除恶性[47]。一项对937例患者的荟萃分析表明,囊液细胞学诊断PCN的灵敏度为63%,特异度为88%[48]。另一项荟萃分析结果提示,细胞学检查的灵敏度和特异度分别为51%和94%[49]。 囊液淀粉酶水平可作为一个排他性诊断的指标,即低水平囊液淀粉酶(<250 IU/L)可以排除98%假性囊肿[50]。 囊液CEA水平鉴别黏液和非黏液性PCN的准确率为60%~86%,高水平的囊液CEA往往提示黏液性PCN[50⁃51]。现行指南如2017年IAP、2017年ESGE、2018年ESG指南均推荐临界值水平为192 ng/mL;但该值的界定仅基于一项纳入112例患者的前瞻性研究[52]。2018年一项系统回顾显示CEA阈值为20 ng/mL时,其特异度和灵敏度分别为91%和93%[53]。将该值水平提高(>800 ng/mL)或降低(5 ng/mL),其对IPMN或MCN和非黏液性PCN诊断的特异度可提高到95%以上,但灵敏度降低至50%[50]。其他囊液蛋白生物标志物包括CA72⁃4、CA125、CA19⁃9或CA15⁃3诊断PCN的准确率均低于CEA,因此未作为常规使用[50]。 囊液葡萄糖在鉴别黏液和非黏液性PCN方面有较高的准确性,且葡萄糖检测经济、快速,应作为临床常规检测手段。囊内葡萄糖浓度低可预测黏液性PCN,而高浓度葡萄糖则提示浆液性PCN。2021年一项研究显示囊液葡萄糖浓度<50 mg/dL诊断黏液性PCN的灵敏度明显高于CEA水平>192 ng/mL的患者(93.6%比54.8%)[54]。一项包含7项研究566例患者的荟萃分析结果显示,较低囊液葡萄糖浓度(临界值<50 mg/dL)区分黏液性和非黏液性PCN的灵敏度为90.1%,特异度为85.3%[55]。最新的一项荟萃分析包含8项研究609例PCN患者,结果显示,囊液葡萄糖较CEA诊断黏液和非黏液性PCN灵敏度更高(91%比56%),联合囊液CEA和葡萄糖检测可提高诊断的准确率[56]。 大多数指南认为分子标志物检测一般用于科研而非临床。2018年ACG指南建议在囊性疾病分型诊断不确定的情况下,当检测结果可能改变治疗时,可以考虑使用分子标志物[4]。目前已对囊液中的DNA、RNA、蛋白质和代谢组学标志物分析进行了应用,其中大多数仍处于早期开发阶段,尚未转化为临床实践。一项荟萃分析(6项研究、785例PCN患者)结果显示,囊液KRAS、GNAS基因双重突变诊断黏液性PCN的灵敏度、特异度、准确率分别为75%、99%、97%,诊断IPMN的灵敏度、特异度、准确率分别为94%、91%和97%[56]。但由于基因检测成本高,部分医疗机构受资源、设备的限制,KRAS/GNAS等基因突变分析未列为常规应用。本指南建议对某些PCN诊断不明,但明确诊断可能改变治疗时,可考虑使用高度敏感的技术对突变基因进行分析。 EUS⁃TTNB相比EUS⁃FNA能显著提高PCN的诊断效能,同时EUS⁃TTNB不良事件发生率较低。(证据质量:B;推荐强度:弱) EUS⁃TTNB是通过19 G穿刺针插入一种切割式微活检钳,抓取囊壁组织以进行细胞组织学分析的一项技术。目前,该项技术是胰腺囊性病变的研究热点。多项研究结果显示,EUS⁃TTNB相比FNA能够显著提高鉴别PCN类型的诊断效能,另外EUS⁃TTNB与术后病理的诊断一致性相比FNA也明显增加[57⁃63]。EUS⁃TTNB相关不良事件发生率各家报道不一。其中主要包括囊壁内出血和胰腺炎,发生率为5%和2.3%[61⁃62]。以上不良事件大多数呈自限性,通常不需要额外的医疗干预。因此,从目前研究结果来看,EUS⁃TTNB在区别PCN类型、甄别良恶性方面相比FNA具有独到优势,应用前景良好。 nCLE应使用于拟行手术治疗而无法排除SCN的PCN患者。(证据质量:B;推荐强度:弱) nCLE(也称为细针型共聚焦)是将显微镜成像与内镜整合在一起的新型技术,可通过穿刺针(目前最细为19 G)活检孔道的共聚焦探头,实时观察囊肿内壁细胞水平的结构,达到近似活体病理诊断的目的。nCLE观察到表面血管网、腺上皮和微绒毛结构分别提示SCN、MCN和IPMN诊断。多项回顾性分析和前瞻性研究发现nCLE在鉴别胰腺浆液性肿瘤和黏液性肿瘤(包括IPMN和MCN)方面价值较高。2022年的两项荟萃分析结果显示,nCLE诊断PCN的灵敏度为85%~90%,特异度为96%~99%[67⁃68]。一项研究显示如能通过nCLE准确找出SCN,可以减少23%的手术干预、0.4%的手术死亡以及27%的医疗支出[69]。有研究发现nCLE与微活检钳囊壁活检相比诊断效能相当,但诊断率更高[70]。 nCLE最常见的并发症是急性胰腺炎和囊内出血,早期报道发生率在7%~9%[71⁃72],近年来可以控制在1%~3%[67⁃68]。对于准备行手术治疗的PCN患者,如无法排除SCN的可能,应行nCLE观察,如能找到典型的表面血管网结构,可以确诊SCN,从而避免不必要的手术。 目前的nCLE研究即使是前瞻性的,入组患者能获得病理诊断的比例大多不高(低于50%),确切诊断无法获知,一定程度上削弱了研究结果的可靠性。因此,2018年ESG指南指出应进行更多相关的研究以提供有力的证据来证实nCLE的价值[3]。本指南推荐nCLE可应用于拟行手术治疗而无法排除SCN的PCN患者,以避免不必要的手术。 CE⁃EUS可显示病变血供,建议使用CE⁃EUS进一步评估壁结节,亦有助于评估囊内血管和分隔。(证据质量:B;推荐强度:弱) CE⁃EUS上出现壁结节、实性肿块或分隔的过度强化,需警惕病变恶变可能,应考虑对病变处进行EUS⁃FNA。(证据质量:B;推荐强度:弱) 1995年Kato等[73]首次报道了腹腔干内注入二氧化碳进行CE⁃EUS扫查的研究。随着各种可用于对比增强多普勒EUS的对比剂被开发,对比增强谐波EUS(contrast harmonic⁃EUS,CH⁃EUS)于2008年问世[74]。CE⁃EUS对比剂一般由直径2~5 μm充满气体的微泡组成,外包磷脂或脂质外壳[75]。经外周静脉给药后,对比剂中的微泡受超声波的破坏或击打产生共振,从而产生超声图像中的高信号,伪影非常低。CE⁃EUS对胰腺实性和囊性病变的定性以及对胰腺癌的分期与对病变血管的评估至关重要,尤其对于PCN,CE⁃EUS可增加壁结节和其他非增强固体成分(即黏液块或碎片)在超声显示图中的差别。它不仅可以显示最小的细节如小间隔,还可以观察微气泡在毛细血管床的运动,因此CE⁃EUS能以非常高的分辨率检测到囊性病变的囊壁或结节的血管[76⁃77]。PCN中可观察到壁结节血管,而发育不良的胰腺囊肿(dysontogenetic pancreatic cysts)和假性囊肿中则观察不到此类现象。2013年的一项前瞻性研究评估了17例因IPMN伴壁结节而接受手术切除患者的CE⁃EUS结果,发现CE⁃EUS检测IPMN壁结节的灵敏度、特异度和准确率分别为100%、80%和92%,而对比增强多排CT的灵敏度及特异度分别为58%和100%[78]。2016年一项回顾性研究发现,在通过CT、MRI或EUS检查后,427例分支胰管型IPMN患者中发现21例病变存在壁结节,CE⁃EUS显示其中14例患者中壁结节为无血供模式,3例为等血供模式,4例为富血供模式,未发现病变表现为乏血供模式。14例显示为无血供模式的患者最终被诊断患有带黏液栓的IPMN,避免了不必要的手术[79]。2019年发表的一项前瞻性研究共纳入82例经手术病理证实为PCN的患者,将CE⁃EUS对PCN分类的诊断准确率与CT、MRI和EUS分别进行了比较,结果显示,CE⁃EUS在识别PCN方面较CT(92.3%比76.9%)、MRI(93.0%比78.9%)、EUS(92.7%比84.2%)准确率更高,且良恶性病变的增强模式差异有统计学意义。将增强模式作为恶性病变诊断标准,灵敏度、特异度和准确率分别为80%、65.3%和67.1%[80]。另一项荟萃分析结果显示,CE⁃EUS的集合灵敏度为88.2%(95%CI:0.827~0.925),特异度为79.1%(95%CI:0.745~0.833),诊断准确率为89.6%(95%CI:0.834~0.958);若使用CH⁃EUS进行分析,则集合灵敏度可增加到97.0%(95%CI:0.925~0.992),特异度增加到90.4%(95%CI:0.852~0.942),诊断准确率增加到95.6%(95%CI:0.926~0.987)[81]。因此,与CT、MRI和常规EUS相比,CE⁃EUS在区分PCN方面的效果更好,可以检测出真正的壁结节,假阴性率低,正逐渐成为诊断PCN的一项重要影像技术[82]。 CE⁃EUS还有助于评估结节形态学特征,进而预测肿瘤恶性程度(腺瘤与癌变)。Ohno等[83]研究将观察到的壁结节根据CE⁃EUS检查结果分为4种类型:低乳头状结节、息肉状结节、乳头状结节和浸润性结节。多变量Logistic回归分析显示乳头状或浸润性结节(OR=10.8,95%CI:2.75~56.1)及有症状的IPMN(OR=4.31,95%CI:1.37~14.7)是恶性IPMN的独立风险因素;CE⁃EUS上存在乳头状和浸润性结节预测恶性IPMN的灵敏度为60%,特异度为92.9%,准确率为75.9%,提示CE⁃EUS可通过检测和评估壁结节大小及形态特征,确保预测恶性肿瘤的最佳性能[84]。对于胰腺手术后的监测,2018年的一项单中心回顾性研究通过对IPMN手术切除后患者的术后随访发现,CE⁃EUS检测到了最初在对比度增强CT或EUS⁃FNA上漏掉的小病灶[85]。 总体而言,由于CE⁃EUS在评估壁结节方面的良好能力,CE⁃EUS可用于进一步评估可疑的壁结节和囊性病灶内的血管及分隔。CE⁃EUS上出现壁结节、实性肿块或分隔的过度强化,需警惕其恶变可能,应考虑对病变处进行EUS⁃FNA。但由于观察者之间的不一致性产生的影响不容忽视,还需进一步的研究来验证CE⁃EUS的效用以扩大其在PCN管理中的应用。 合并高危征象或临床难以鉴别的主胰管型IPMN或混合型IPMN推荐行胰管镜检查。(证据质量:C;推荐级别:弱) 2007年单人操作胰管镜系统被首次报道[86]。胰管镜的独特优势在于可直接观察主胰管并可以进行组织学活检。现行胰管镜系统可通过十二指肠镜的工作通道,且胰管镜本身自带活检工作通道,可直视下通过活检钳进行组织病理学取材。胰管镜用于诊断目的主要有两个适应证:(1)直视下观察IPMN同时获得组织病理学[87]。(2)用于胰管的观察以鉴别良恶性疾病,有助于决定手术切除范围[88]。 多项研究发现胰管镜在IPMN诊断、评估严重程度方面具有一定的价值[89⁃94]。2018年一项纳入31例患者的多中心回顾性研究结果显示,胰管镜在42%的CT或EUS阴性的患者中有阳性发现[90]。2014年一项纳入41例患者的前瞻性研究结果显示,胰管镜可为多数患者提供额外的诊断信息并可影响76%的临床决策[89]。2022年一项荟萃分析显示IPMN患者行胰管镜检查的诊断准确率高,且能够改变13%~62%的手术决策[93];但该项荟萃分析亦指出,胰管镜检查的不良事件发生率约为12%,其中约10%为术后胰腺炎。 2018年ESG指南指出应行更多研究来验证胰管镜在IPMN中的作用,故不推荐用于临床。因此本指南建议胰管镜应在有经验的大型临床医学中心进行。合并高危征象或临床难以鉴别的主胰管型IPMN或混合型IPMN推荐行胰管镜检查。鉴于观察者之间的一致性存在差异,亟待更多高质量的国内研究来验证胰管镜在IPMN中的效用。 诊断考虑为MCN或IPMN的无症状性PCN且具备手术条件的患者应列为随访对象。(证据质量:C;推荐级别:弱) 恶变风险极低的SCN患者建议根据症状进行随访。(证据质量:C;推荐级别:弱) 目前尚无前瞻性研究显示PCN随访可能会改变PCN恶变所致死亡率[95],因此,随访的作用对预后的影响仍未被证实。但有充分证据显示MCN和IPMN具恶变倾向,且高级别内瘤变或早期胰腺癌患者行手术切除可提高生存率,提示PCN患者在随访中可能获益[96⁃98]。6项来自美国、日本、中国的观察性研究(5项回顾性、1项前瞻性),样本量分别为888例、10 506例、109例、557例、245例、1 404例[96⁃101],结果发现均有一定比例的MCN和IPMN的术后病理提示合并高级别内瘤变或浸润性癌。另有研究显示分支胰管型IPMN随时间进展恶变的发生风险增高,5年的恶变发生率为3.3%,而15年则可达到15%[100]。2016年一项系统回顾分析结果显示,MCN的术后标本中0~34%为恶性,行手术切除后五年生存率约为60%[102];但在肿瘤直径<4 cm的MCN中仅有0.03%为恶性。良性MCN术后未见复发,提示MCN术后标本为良性者无需进一步随访。 与SCN相关的3项研究[103⁃105]中有2项显示SCN的恶变风险较低,其中一项来自多国家的回顾性研究共纳入2 622例SCN患者,显示仅3例(0.1%)出现恶变;术后死亡率为0.6%,与SCN相关的死亡率为0.1%。另一项来自美国的回顾性研究共分析了193例SCN患者的病理标本,亦提示SCN恶变所致的死亡罕见。而2019年墨西哥一项纳入31例SCN的回顾性研究结果显示,SCN在行EUS的随访过程中可能出现体积增大,因此建议应对无症状SCN患者进行随访以观察其体积增大情况。 PCN种类多样,各类型的PCN恶变风险不一,且随访带给患者一定的心理负担和经济负担,因此需重点鉴别恶变风险较高的PCN。而目前各指南对随访对象的纳入标准略有差异。ACG和ESG指南建议将无症状的MCN和IPMN且可耐受手术的患者列为随访对象;而AGA和IAP指南则建议所有MCN患者均应接受手术治疗。MCN或IPMN的无症状性PCN且具备手术条件的患者应列为随访对象。对于SCN,ESG指南推荐对影像学提示为SCN的无症状患者随访1年,1年后则根据症状进行随访。而ACG指南则不推荐对诊断明确的SCN进行随访。本指南推荐对SCN患者根据症状进行随访。 MRI联合MRCP可作为IPMN或MCN的随访检查方法。(证据质量:A;推荐级别:强) EUS或CT可作为存在MRI禁忌患者的随访检查方法。(证据质量:C;推荐级别:弱) 多项研究对随访人群的检查方法进行了探讨[20,22,25,33,106⁃113]。多数研究显示MRI和CT在评估PCN高危征象或恶变的诊断效能相当,且采用增强MRI相比平扫MRI的灵敏度更高。另一项回顾性研究显示MRI和EUS用于确定PCN与胰管关系的诊断准确率相当,分别为93.1%和93.0%,评估良恶性PCN的诊断准确率分别为90.2%和92.3%,差异均无统计学意义。 对IPMN或MCN监测的最佳检查手段现各指南尚无一致意见。一般来说,MRI或MRCP推荐用于PCN的监测,因其无电离辐射,且能清晰显示胰管、强化壁结节或内部分隔。行增强MRI需使用钆剂,而在随访过程中反复使用钆剂使其可能在大脑中蓄积[114]。已有部分研究显示平扫或增强MRI均不影响随访过程制定临床诊治方案,且两者在区分PCN良恶性方面差异无统计学意义[115⁃116]。因此,本指南推荐随访过程中可采用平扫MRI,如有必要则可进一步选择增强MRI进行评估。对无法行MRI或MRCP的患者可选择CT或EUS作为随访监测手段。 EUS分辨率高,可清晰地显示PCN的结构细节,且同样无电离辐射,对胰腺囊性病变的诊断和鉴别诊断可能更有帮助[117]。EUS还允许对囊性病变进行FNA,以进行生物化学、细胞学和分子生物学分析。但EUS更依赖于操作者的经验。CT或MRI联合EUS±FNA对PCN的总体诊断准确率分别提高了36%和54%[17]。 推荐无高危征象的IPMN或MCN可根据病灶大小制定监测随访策略。(证据质量:C;推荐级别:弱) 含高危征象的IPMN或MCN经多学科会诊(multi⁃disciplinary treatment,MDT)后未行手术者建议间隔6个月进行MRI随访。(证据质量:C;推荐级别:弱) 8项研究报道了PCN患者的随访周期[10,118⁃123],其中5项回顾性研究均不同程度显示病灶大小和增长速度与PCN恶变的风险呈正相关。2项荟萃分析亦显示病灶长径>3 cm是IPMN恶变的独立危险因素。而一项正在进行的名为PACYFIC(pancreatic cyst follow‑up:an international collaboration)的大型前瞻性队列研究(https://www.trialregister.nl/trial/4365)旨在探讨PCN的最佳随访周期。该研究的主要终点为达到手术适应证的PCN病例数和PCN恶变(重度异型增生或浸润性癌)的病例数。 预防胰腺癌的最佳目标是在PCN为重度异型增生时即手术切除病灶,因此识别PCN合并重度异型增生或浸润性癌的危险因素至关重要。迄今为止,已有数个临床和影像学方面的高危因素被确认。虽略有不同,但大多数指南认为黄疸、病灶大小(大多数指南推荐病灶长径≥3 cm)、强化壁结节>5 mm、实性成分、细胞学检查阳性、主胰管扩张≥10 mm为PCN恶变的高危因素,因此也是外科手术的绝对适应证。 一项纳入2 297例患者的荟萃分析显示,强化壁结节在IPMN恶变方面的阳性预测值为62%,壁结节的大小在预测IPMN恶变方面具有重要意义[84],尤其对分支胰管型IPMN恶变的诊断价值最高[124]。实际上现行指南均推荐壁结节是行手术治疗的绝对指征。壁结节大小的最佳值目前尚无定论。2017年IAP和2018年ESG指南将壁结节≥5 mm作为识别高危病变的标准,但该阈值的界定并未经大型前瞻性研究验证。EUS显示壁结节≥5 mm对识别重度异型增生或早期癌变的灵敏度为73%~85%,特异度为71%~100%。通过CE⁃EUS测量的壁结节大小是预测IPMN恶变的危险因素,其标准化均数差为0.79[84]。 注:PCN指胰腺囊性肿瘤;SCN指浆液性囊腺瘤;MTD指多学科会诊;EUS(FNA)指超声内镜(细针穿刺抽吸);MRI指磁共振成像;MCN指黏液性囊腺瘤;IPMN指胰腺导管内乳头状黏液性肿瘤 图1 胰腺囊性肿瘤诊断随访流程图 研究显示病灶增长速度可能比囊肿大小更重要。2021年一项大型回顾性多中心研究纳入了包括283例无高危征象的分支胰管型IPMN患者,结果显示恶性分支胰管型IPMN的生长速度快于良性分支胰管型IPMN,且生长速度≥2.5 mm/年的癌变风险显著升高[125]。 一项包含901例患者的回顾性分析显示,主胰管扩张是IPMN恶变的最佳预测因素。该项研究认为胰管扩张5~7 mm可以作为区分轻度异型增生和重度异型增生或浸润性癌的最佳预测因素[126]。一项纳入353例PCN患者的大型回顾性研究结果与现行指南所示危险因素类似,即主胰管>10 mm、壁结节、实性成分、CA19⁃9升高与PCN恶变相关[127]。 总体来说,现今各指南对无高危症状或征象的PCN的随访没有统一标准。因此,本指南根据PCN的不同类型、体积及患者的自身状况制定了个体化的监测随访流程(图1)。2018年ESG指南建议采用EUS/MRI随访<4 cm的无高危因素的MCN或IPMN。2018年ACG指南建议根据囊肿大小(<1 cm、1~2 cm、2~3 cm、>3 cm)采用MRI监测MCN或IPMN来制定随访策略;术后患者则推荐根据异型增生程度进行随访。2015年AGA指南则推荐如果囊肿<3 cm且无实性成分或主胰管扩张,则行MRI随访,如患者适合手术则建议终身随访。2017年IAP指南则同样基于囊肿大小(<1 cm、1~2 cm、2~3 cm和>3 cm)采用CT或MRI和EUS进行随访,但该指南的随访频率较其他指南高。IPMN和MCN均可能在稳定期后继续生长,因此只要患者随访意愿强烈或仍适合手术,则应一直随访。ESG指南及欧洲神经内分泌肿瘤指南推荐对<20 mm的cNET进行监测。cNET的手术适应证为病灶每年增长速度>5 mm或病灶>20 mm。然而,最佳随访手段仍需依赖大规模前瞻性研究进一步评估。 李兆申(海军军医大学第一附属医院消化内科),金震东(海军军医大学第一附属医院消化内科),李汛(兰州大学第一医院外科),边云(海军军医大学第一附属医院影像科),陈世耀(复旦大学附属中山医院消化内科),程斌(华中科技大学同济医学院附属同济医院消化内科),单宏波(广东省中山大学附属肿瘤医院消化内科),丁震(中山大学附属第一医院消化内科),何爱娜(上海市第六人民医院),何妙霞(海军军医大学第一附属医院病理科),黄永辉(北京大学第三医院消化内科),蒋斐(海军军医大学第一附属医院消化内科),金忱(复旦大学附属华山医院胰腺外科),金钢(海军军医大学第一附属医院胰腺外科),金雪娟(复旦大学附属中山医院复旦大学循证医学中心),李鹏(北京友谊医院消化内科),李百文(上海市第一人民医院消化内科),李惠凯(解放军总医院消化内科),楼文晖(复旦大学附属中山医院普外科),吕瑛(南京大学医学院附属鼓楼医院消化内科),梅俏(安徽医科大学第一附属医院消化内科),孙思予(中国医科大学附属盛消化内科),覃山羽(广西医科大学第一附属医院消化内科),王雯(解放军部队联勤保障第九〇〇医院消化内科),王雷(海军军医大学第一附属医院消化内科),王培军(同济医院医学影像科),王晓艳(中南大学湘雅三医院消化内科),杨爱明(北京协和医院消化内科),姚方(中国医学科学院肿瘤医院内镜科),姚君(深圳市人民医院消化内科),张敏敏(上海交通大学医学院附属瑞金医院消化内科),张太平(北京协和医院普通外科),张筱凤(杭州市第一医院内镜中心),钟良(复旦大学附属华山医院消化内科),祝荫(南昌大学第一附属医院消化内科),邹晓平(南京大学医学院附属鼓楼医院消化内科),唐涌进(中华消化内镜杂志编辑部),吕芳萍(中华胰腺病杂志编辑部) 王雷(海军军医大学第一附属医院消化内科),蒋斐(海军军医大学第一附属医院消化内科),叶晓华(浙江大学医学院附属金华医院消化内科) 利益冲突所有作者声明不存在利益冲突 参 考 文 献 [1] Vege SS, Ziring B, Jain R, et al. American gastroenterological association institute guideline on the diagnosis and management of asymptomatic neoplastic pancreatic cysts[J]. Gastroenterology, 2015, 148(4): 819-822. DOI: 10.1053/j.gastro.2015.01.015. [2] Tanaka M, Fernandez-Del Castillo C, Kamisawa T, et al. Revisions of international consensus Fukuoka guidelines for the management of IPMN of the pancreas[J]. Pancreatology, 2017, 17(5): 738-753. DOI: 10.1016/j.pan.2017.07.007. [3] European Study Group on Cystic Tumours of the P. European evidence-based guidelines on pancreatic cystic neoplasms[J]. Gut, 2018, 67(5): 789-804. DOI: 10.1136/gutjnl-2018-316027. [4] Elta GH, Enestvedt BK, Sauer BG, et al. ACG clinical guideline: diagnosis and management of pancreatic cysts[J]. Am J Gastroenterol, 2018, 113(4): 464-479. DOI: 10.1038/ajg.2018.14. [5] Fernandez-del Castillo C, Targarona J, Thayer SP, et al. Incidental pancreatic cysts: clinicopathologic characteristics and comparison with symptomatic patients[J]. Arch Surg, 2003, 138(4): 427-434. DOI: 10.1001/archsurg.138.4.427. [6] Sugiyama M, Atomi Y. Intraductal papillary mucinous tumors of the pancreas: imaging studies and treatment strategies[J]. Ann Surg, 1998, 228(5): 685-691. DOI: 10.1097/00000658-199811000-00008. [7] Parra-Herran CE, Garcia MT, Herrera L, et al. Cystic lesions of the pancreas: clinical and pathologic review of cases in a five year period[J]. JOP, 2010, 11(4): 358-364. [8] Walsh RM, Henderson JM, Vogt DP, et al. Prospective preoperative determination of mucinous pancreatic cystic neoplasms[J]. Surgery, 2002, 132(4): 628-634. DOI: 10.1067/msy.2002.127543. [9] Goh BK, Tan YM, Cheow PC, et al. Cystic lesions of the pancreas: an appraisal of an aggressive resectional policy adopted at a single institution during 15 years[J]. Am J Surg, 2006, 192(2): 148-154. DOI: 10.1016/j.amjsurg.2006.02.020. [10] Anand N, Sampath K, Wu BU. Cyst features and risk of malignancy in intraductal papillary mucinous neoplasms of the pancreas: a meta-analysis[J]. Clin Gastroenterol Hepatol, 2013, 11(8): 913-921. DOI: 10.1016/j.cgh.2013.02.010. [11] Hwang J, Kim YK, Min JH, et al. Comparison between MRI with MR cholangiopancreatography and endoscopic ultrasonography for differentiating malignant from benign mucinous neoplasms of the pancreas[J]. Eur Radiol, 2018, 28(1): 179-187. DOI: 10.1007/s00330-017-4926-5. [12] Du C, Chai NL, Linghu EQ, et al. Comparison of endoscopic ultrasound, computed tomography and magnetic resonance imaging in assessment of detailed structures of pancreatic cystic neoplasms[J]. World J Gastroenterol, 2017, 23(17): 3184-3192. DOI: 10.3748/wjg.v23.i17.3184. [13] Jang DK, Song BJ, Ryu JK, et al. Preoperative diagnosis of pancreatic cystic lesions: the accuracy of endoscopic ultrasound and cross-sectional imaging[J]. Pancreas, 2015, 44(8): 1329-1333. DOI: 10.1097/MPA.0000000000000396. [14] Lu X, Zhang S, Ma C, et al. The diagnostic value of EUS in pancreatic cystic neoplasms compared with CT and MRI[J]. Endosc Ultrasound, 2015, 4(4): 324-329. DOI: 10.4103/2303-9027.170425. [15] Kauhanen S, Rinta-Kiikka I, Kemppainen J, et al. Accuracy of 18F-FDG PET/CT, multidetector CT, and MR imaging in the diagnosis of pancreatic cysts: a prospective single-center study[J]. J Nucl Med, 2015, 56(8): 1163-1168. DOI: 10.2967/jnumed.114.148940. [16] Duconseil P, Turrini O, Ewald J, et al. 'Peripheric' pancreatic cysts: performance of CT scan, MRI and endoscopy according to final pathological examination[J]. HPB (Oxford), 2015, 17(6): 485-489. DOI: 10.1111/hpb.12388. [17] Khashab MA, Kim K, Lennon AM, et al. Should we do EUS/FNA on patients with pancreatic cysts? The incremental diagnostic yield of EUS over CT/MRI for prediction of cystic neoplasms[J]. Pancreas, 2013, 42(4): 717-721. DOI: 10.1097/MPA.0b013e3182883a91. [18] Saito M, Ishihara T, Tada M, et al. Use of F-18 fluorodeoxyglucose positron emission tomography with dual-phase imaging to identify intraductal papillary mucinous neoplasm[J]. Clin Gastroenterol Hepatol, 2013, 11(2): 181-186. DOI: 10.1016/j.cgh.2012.10.037. [19] de Jong K, Nio CY, Mearadji B, et al. Disappointing interobserver agreement among radiologists for a classifying diagnosis of pancreatic cysts using magnetic resonance imaging[J]. Pancreas, 2012, 41(2): 278-282. DOI: 10.1097/MPA.0b013e31822899b6. [20] Kim JH, Eun HW, Park HJ, et al. Diagnostic performance of MRI and EUS in the differentiation of benign from malignant pancreatic cyst and cyst communication with the main duct[J]. Eur J Radiol, 2012, 81(11): 2927-2935. DOI: 10.1016/j.ejrad.2011.12.019. [21] Sahani DV, Sainani NI, Blake MA, et al. Prospective evaluation of reader performance on MDCT in characterization of cystic pancreatic lesions and prediction of cyst biologic aggressiveness[J]. AJR Am J Roentgenol, 2011, 197(1): W53-W61. DOI: 10.2214/AJR.10.5866. [22] Lee HJ, Kim MJ, Choi JY, et al. Relative accuracy of CT and MRI in the differentiation of benign from malignant pancreatic cystic lesions[J]. Clin Radiol, 2011, 66(4): 315-321. DOI: 10.1016/j.crad.2010.06.019. [23] Pongpornsup S, Piyapittayanan S, Charoensak A. MDCT imaging findings for characterization pancreatic cystic lesion: differentiation between benign and malignant pattern[J]. J Med Assoc Thai, 2011, 94(3): 369-378. [24] Hong HS, Yun M, Cho A, et al. The utility of F-18 FDG PET/CT in the evaluation of pancreatic intraductal papillary mucinous neoplasm[J]. Clin Nucl Med, 2010, 35(10): 776-779. DOI: 10.1097/RLU.0b013e3181e4da32. [25] Sainani NI, Saokar A, Deshpande V, et al. Comparative performance of MDCT and MRI with MR cholangiopancreatography in characterizing small pancreatic cysts[J]. AJR Am J Roentgenol, 2009, 193(3): 722-731. DOI: 10.2214/AJR.08.1253. [26] Fisher WE, Hodges SE, Yagnik V, et al. Accuracy of CT in predicting malignant potential of cystic pancreatic neoplasms[J]. HPB (Oxford), 2008, 10(6): 483-490. DOI: 10.1080/13651820802291225. [27] Visser BC, Muthusamy VR, Yeh BM, et al. Diagnostic evaluation of cystic pancreatic lesions[J]. HPB (Oxford), 2008, 10(1): 63-69. DOI: 10.1080/13651820701883155. [28] Sperti C, Bissoli S, Pasquali C, et al. 18-fluorodeoxyglucose positron emission tomography enhances computed tomography diagnosis of malignant intraductal papillary mucinous neoplasms of the pancreas[J]. Ann Surg, 2007, 246(6): 932-939. DOI: 10.1097/SLA.0b013e31815c2a29. [29] Tann M, Sandrasegaran K, Jennings SG, et al. Positron-emission tomography and computed tomography of cystic pancreatic masses[J]. Clin Radiol, 2007, 62(8): 745-751. DOI: 10.1016/j.crad.2007.01.023. [30] Song SJ, Lee JM, Kim YJ, et al. Differentiation of intraductal papillary mucinous neoplasms from other pancreatic cystic masses: comparison of multirow-detector CT and MR imaging using ROC analysis[J]. J Magn Reson Imaging, 2007, 26(1): 86-93. DOI: 10.1002/jmri.21001. [31] Gerke H, Jaffe TA, Mitchell RM, et al. Endoscopic ultrasound and computer tomography are inaccurate methods of classifying cystic pancreatic lesions[J]. Dig Liver Dis, 2006, 38(1): 39-44. DOI: 10.1016/j.dld.2005.09.023. [32] Sperti C, Pasquali C, Decet G, et al. F-18-fluorodeoxyglucose positron emission tomography in differentiating malignant from benign pancreatic cysts: a prospective study[J]. J Gastrointest Surg, 2005, 9(1): 22-29. DOI: 10.1016/j.gassur.2004.10.002. [33] Udare A, Agarwal M, Alabousi M, et al. Diagnostic accuracy of MRI for differentiation of benign and malignant pancreatic cystic lesions compared to CT and endoscopic ultrasound: systematic review and Meta-analysis[J]. J Magn Reson Imaging, 2021, 54(4): 1126-1137. DOI: 10.1002/jmri.27606. [34] Tirkes T, Patel AA, Tahir B, et al. Pancreatic cystic neoplasms and post-inflammatory cysts: interobserver agreement and diagnostic performance of MRI with MRCP[J]. Abdom Radiol (NY), 2021, 46(9): 4245-4253. DOI: 10.1007/s00261-021- 03116-6. [35] Tirkes T, Aisen AM, Cramer HM, et al. Cystic neoplasms of the pancreas; findings on magnetic resonance imaging with pathological, surgical, and clinical correlation[J]. Abdom Imaging, 2014, 39(5): 1088-1101. DOI: 10.1007/s00261-014- 0138-5. [36] Pausawasdi N, Ratanachu-Ek T. Endoscopic ultrasonography evaluation for pancreatic cysts: necessity or overkill?[J]. Dig Endosc, 2017, 29(4): 444-454. DOI: 10.1111/den.12873. [37] de Jong K, van Hooft JE, Nio CY, et al. Accuracy of preoperative workup in a prospective series of surgically resected cystic pancreatic lesions[J]. Scand J Gastroenterol, 2012, 47(8-9): 1056-1063. DOI: 10.3109/00365521.2012. 674970. [38] Zhu H, Jiang F, Zhu J, et al. Assessment of morbidity and mortality associated with endoscopic ultrasound-guided fine-needle aspiration for pancreatic cystic lesions: a systematic review and meta-analysis[J]. Dig Endosc, 2017, 29(6): 667-675. DOI: 10.1111/den.12851. [39] Colan-Hernandez J, Sendino O, Loras C, et al. Antibiotic prophylaxis is not required for endoscopic ultrasonography-guided fine-needle aspiration of pancreatic cystic lesions, based on a randomized trial[J]. Gastroenterology, 2020, 158(6): 1642-1649 e1. DOI: 10.1053/j.gastro.2020.01.025. [40] 中国医师协会超声内镜专家委员会.中国内镜超声引导下细针穿刺抽吸/活检术应用指南(2021,上海)[J].中华消化内镜杂志, 2021, 38(5): 337-360. DOI: 10.3760/cma.j.cn321463-20210302-00143. [41] Leung KK, Ross WA, Evans D, et al. Pancreatic cystic neoplasm: the role of cyst morphology, cyst fluid analysis, and expectant management[J]. Ann Surg Oncol, 2009, 16(10): 2818-2824. DOI: 10.1245/s10434-009-0502-9. [42] Bick BL, Enders FT, Levy MJ, et al. The string sign for diagnosis of mucinous pancreatic cysts[J]. Endoscopy, 2015, 47(7): 626-631. DOI: 10.1055/s-0034-1391484. [43] Oh SH, Lee JK, Lee KT, et al. The combination of cyst fluid carcinoembryonic antigen, cytology and viscosity increases the diagnostic accuracy of mucinous pancreatic cysts[J]. Gut Liver, 2017, 11(2): 283-289. DOI: 10.5009/gnl15650. [44] Khamaysi I, Abu Ammar A, Vasilyev G, et al. Differentiation of pancreatic cyst types by analysis of rheological behavior of pancreatic cyst fluid[J]. Sci Rep, 2017, 7: 745589. DOI: 10.1038/srep45589. [45] Hakim S, Coronel E, Gonzalez GMN, et al. An international study of interobserver variability of 'string sign' of pancreatic cysts among experienced endosonographers[J]. Endosc Ultrasound, 2021, 10(1): 39-50. DOI: 10.4103/eus.eus_73_20. [46] Giannone F, Crippa S, Aleotti F, et al. Improving diagnostic accuracy and appropriate indications for surgery in pancreatic cystic neoplasms: the role of EUS[J]. Gastrointest Endosc, 2022, 96(4): 648-656. DOI: 10.1016/j.gie.2022.05.009. [47] Stelow EB, Stanley MW, Bardales RH, et al. Intraductal papillary-mucinous neoplasm of the pancreas. The findings and limitations of cytologic samples obtained by endoscopic ultrasound-guided fine-needle aspiration[J]. Am J Clin Pathol, 2003,120(3): 398-404. DOI: 10.1309/CEPK-542W-3885- 2LP8. [48] Thosani N, Thosani S, Qiao W, et al. Role of EUS-FNA-based cytology in the diagnosis of mucinous pancreatic cystic lesions: a systematic review and meta-analysis[J]. Dig Dis Sci, 2010, 55(10): 2756-2766. DOI: 10.1007/s10620-010-1361-8. [49] Wang QX, Xiao J, Orange M, et al. EUS-Guided FNA for diagnosis of pancreatic cystic lesions: a Meta-analysis[J]. Cell Physiol Biochem, 2015, 36(3): 1197-1209. DOI: 10.1159/000430290. [50] van der Waaij LA, van Dullemen HM, Porte RJ. Cyst fluid analysis in the differential diagnosis of pancreatic cystic lesions: a pooled analysis[J]. Gastrointest Endosc, 2005, 62(3): 383-389. DOI: 10.1016/s0016-5107(05)01581-6. [51] Cizginer S, Turner BG, Bilge AR, et al. Cyst fluid carcinoembryonic antigen is an accurate diagnostic marker of pancreatic mucinous cysts[J]. Pancreas, 2011, 40(7): 1024-1028. DOI: 10.1097/MPA.0b013e31821bd62f. [52] Brugge WR, Lewandrowski K, Lee-Lewandrowski E, et al. Diagnosis of pancreatic cystic neoplasms: a report of the cooperative pancreatic cyst study[J]. Gastroenterology, 2004, 126(5): 1330-1336. DOI: 10.1053/j.gastro.2004.02.013. [53] van Huijgevoort N, Hoogenboom SA, Lekkerkerker SJ, et al. The diagnostic accuracy of carcinoembryonic antigen in differentiating mucinous and non-mucinous pancreatic cystic neoplasms-a systematic review and individual patient data meta-analysis[J]. Endoscopy, 2018, 50(4): 110-111. DOI: 10.1055/s-0038-1637357. [54] Ribaldone DG, Bruno M, Gaia S, et al. Differential diagnosis of pancreatic cysts: a prospective study on the role of intra-cystic glucose concentration[J]. Dig Liver Dis, 2020, 52(9): 1026-1032. DOI: 10.1016/j.dld.2020.06.038. [55] Mohan BP, Madhu D, Khan SR, et al. Intracystic glucose levels in differentiating mucinous from nonmucinous pancreatic cysts: a systematic review and Meta-analysis[J]. J Clin Gastroenterol, 2022, 56(2): e131-e136. DOI: 10.1097/MCG.0000000000001507. [56] McCarty TR, Garg R, Rustagi T. Pancreatic cyst fluid glucose in differentiating mucinous from nonmucinous pancreatic cysts: a systematic review and meta-analysis[J]. Gastrointest Endosc, 2021, 94(4): 698-712 e6. DOI: 10.1016/j.gie.2021.04.025. [57] Kovacevic B, Klausen P, Hasselby JP, et al. A novel endoscopic ultrasound-guided through-the-needle microbiopsy procedure improves diagnosis of pancreatic cystic lesions[J]. Endoscopy, 2018, 50(11): 1105-1111. DOI: 10.1055/a-0625-6440. [58] Yang D, Samarasena JB, Jamil LH, et al. Endoscopic ultrasound-guided through-the-needle microforceps biopsy in the evaluation of pancreatic cystic lesions: a multicenter study[J]. Endosc Int Open, 2018, 6(12): E1423-E1430. DOI: 10.1055/a-0770-2700. [59] Zhang ML, Arpin RN, Brugge WR, et al. Moray micro forceps biopsy improves the diagnosis of specific pancreatic cysts[J]. Cancer Cytopathol, 2018, 126(6): 414-420. DOI: 10.1002/cncy.21988. [60] Crino SF, Bernardoni L, Brozzi L, et al. Association between macroscopically visible tissue samples and diagnostic accuracy of EUS-guided through-the-needle microforceps biopsy sampling of pancreatic cystic lesions[J]. Gastrointest Endosc, 2019, 90(6): 933-943. DOI: 10.1016/j.gie.2019. 05.009. [61] Westerveld DR, Ponniah SA, Draganov PV, et al. Diagnostic yield of EUS-guided through-the-needle microforceps biopsy versus EUS-FNA of pancreatic cystic lesions: a systematic review and meta-analysis[J]. Endosc Int Open, 2020, 8(5): E656-E667. DOI: 10.1055/a-1119-6543. [62] McCarty T, Rustagi T. Endoscopic ultrasound-guided through-the-needle microforceps biopsy improves diagnostic yield for pancreatic cystic lesions: a systematic review and meta-analysis[J]. Endosc Int Open, 2020, 8(10): E1280-E1290. DOI: 10.1055/a-1194-4085. [63] Yang D, Trindade AJ, Yachimski P, et al. Histologic analysis of endoscopic ultrasound-guided through the needle microforceps biopsies accurately identifies mucinous pancreas cysts[J]. Clin Gastroenterol Hepatol, 2019, 17(8): 1587-1596. DOI: 10.1016/j.cgh.2018.11.027. [64] Krishna SG, Hart PA, Malli A, et al. Endoscopic ultrasound-guided confocal laser endomicroscopy increases accuracy of differentiation of pancreatic cystic lesions[J]. Clin Gastroenterol Hepatol, 2020, 18(2): 432-440 e6. DOI: 10.1016/j.cgh.2019.06.010. [65] Bertani H, Pezzilli R, Pigo F, et al. Needle-based confocal endomicroscopy in the discrimination of mucinous from non-mucinous pancreatic cystic lesions[J]. World J Gastrointest Endosc, 2021, 13(11): 555-564. DOI: 10.4253/wjge.v13.i11.555. [66] Hao S, Ding W, Jin Y, et al. Appraisal of EUS-guided needle-based confocal laser endomicroscopy in the diagnosis of pancreatic lesions: a single Chinese center experience[J]. Endosc Ultrasound, 2020, 9(3): 180-186. DOI: 10.4103/eus.eus_9_20. [67] Wang X, Hu J, Yang F, et al. Needle-based confocal laser endomicroscopy for diagnosis of pancreatic cystic lesions: a meta-analysis[J]. Minim Invasive Ther Allied Technol, 2022, 31(5): 653-663. DOI: 10.1080/13645706.2021.1888750. [68] Konjeti VR, McCarty TR, Rustagi T. Needle-based confocal laser endomicroscopy (nCLE) for evaluation of pancreatic cystic lesions: a systematic review and Meta-analysis[J]. J Clin Gastroenterol, 2022, 56(1): 72-80. DOI: 10.1097/MCG.0000000000001468. [69] Le Pen C, Palazzo L, Napoleon B. A health economic evaluation of needle-based confocal laser endomicroscopy for the diagnosis of pancreatic cysts[J]. Endosc Int Open, 2017, 5(10): E987-E995. DOI: 10.1055/s-0043-117947. [70] Kovacevic B, Antonelli G, Klausen P, et al. EUS-guided biopsy versus confocal laser endomicroscopy in patients with pancreatic cystic lesions: a systematic review and meta-analysis[J]. Endosc Ultrasound, 2021, 10(4): 270-279. DOI: 10.4103/EUS-D-20-00172. [71] Nakai Y, Iwashita T, Park DH, et al. Diagnosis of pancreatic cysts: EUS-guided, through-the-needle confocal laser-induced endomicroscopy and cystoscopy trial: DETECT study[J]. Gastrointest Endosc, 2015, 81(5): 1204-1214. DOI: 10.1016/j.gie.2014.10.025. [72] Krishna SG, Swanson B, Hart PA, et al. Validation of diagnostic characteristics of needle based confocal laser endomicroscopy in differentiation of pancreatic cystic lesions[J]. Endosc Int Open, 2016, 4(11): E1124-E1135. DOI: 10.1055/s-0042-116491. [73] Kato T, Tsukamoto Y, Naitoh Y, et al. Ultrasonographic and endoscopic ultrasonographic angiography in pancreatic mass lesions[J]. Acta Radiol, 1995, 36(4): 381-387. DOI:10.1177/028418519503600410. [74] Dietrich CF, Ignee A, Frey H. Contrast-enhanced endoscopic ultrasound with low mechanical index: a new technique[J]. Z Gastroenterol, 2005, 43(11): 1219-1223. DOI: 10.1055/s-2005-858662. [75] Quaia E. Classification and safety of microbubble-based contrast agents. Contrast media in ultrasonography[M]. Berlin: Springer, 2005: 3-14. [76] Seicean A, Badea R, Stan-Iuga R, et al. The added value of real-time harmonics contrast-enhanced endoscopic ultrasonography for the characterisation of pancreatic diseases in routine practice[J]. J Gastrointestin Liver Dis, 2010, 19(1): 99-104. [77] Sakamoto H, Kitano M, Kamata K, et al. Diagnosis of pancreatic tumors by endoscopic ultrasonography[J]. World J Radiol, 2010, 2(4): 122-134. DOI: 10.4329/wjr.v2.i4.122. [78] Yamashita Y, Ueda K, Itonaga M, et al. Usefulness of contrast-enhanced endoscopic sonography for discriminating mural nodules from mucous clots in intraductal papillary mucinous neoplasms: a single-center prospective study[J]. J Ultrasound Med, 2013, 32(1): 61-68. DOI: 10.7863/jum.2013.32.1.61. [79] Fujita M, Itoi T, Ikeuchi N, et al. Effectiveness of contrast-enhanced endoscopic ultrasound for detecting mural nodules in intraductal papillary mucinous neoplasm of the pancreas and for making therapeutic decisions[J]. Endosc Ultrasound, 2016, 5(6): 377-383. DOI: 10.4103/2303-9027.190927. [80] Zhong L, Chai N, Linghu E, et al. A prospective study on contrast-enhanced endoscopic ultrasound for differential diagnosis of pancreatic cystic neoplasms[J]. Dig Dis Sci, 2019, 64(12): 3616-3622. DOI: 10.1007/s10620-019-05718-z. [81] Lisotti A, Napoleon B, Facciorusso A, et al. Contrast-enhanced EUS for the characterization of mural nodules within pancreatic cystic neoplasms: systematic review and meta-analysis[J]. Gastrointest Endosc, 2021, 94(5): 881-889. DOI: 10.1016/j.gie.2021.06.028. [82] van Huijgevoort NCM, Del Chiaro M, Wolfgang CL, et al. Diagnosis and management of pancreatic cystic neoplasms: current evidence and guidelines[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(11): 676-689. DOI: 10.1038/s41575-019-0195-x. [83] Ohno E, Hirooka Y, Itoh A, et al. Intraductal papillary mucinous neoplasms of the pancreas: differentiation of malignant and benign tumors by endoscopic ultrasound findings of mural nodules[J]. Ann Surg, 2009, 249(4): 628-634. DOI: 10.1097/SLA.0b013e3181a189a8. [84] Marchegiani G, Andrianello S, Borin A, et al. Systematic review, meta-analysis, and a high-volume center experience supporting the new role of mural nodules proposed by the updated 2017 international guidelines on IPMN of the pancreas[J]. Surgery, 2018, 163(6): 1272-1279. DOI: 10.1016/j.surg.2018.01.009. [85] Kamata K, Takenaka M, Minaga K, et al. Value of additional endoscopic ultrasonography for surveillance after surgical removal of intraductal papillary mucinous neoplasms[J]. Dig Endosc, 2018, 30(5): 659-666. DOI: 10.1111/den.13176. [86] Chen YK, Pleskow DK. SpyGlass single-operator peroral cholangiopancreatoscopy system for the diagnosis and therapy of bile-duct disorders: a clinical feasibility study (with video)[J]. Gastrointest Endosc, 2007, 65(6): 832-841. DOI: 10.1016/j.gie.2007.01.025. [87] Miura T, Igarashi Y, Okano N, et al. Endoscopic diagnosis of intraductal papillary-mucinous neoplasm of the pancreas by means of peroral pancreatoscopy using a small-diameter videoscope and narrow-band imaging[J]. Dig Endosc, 2010, 22(2): 119-123. DOI: 10.1111/j.1443-1661.2010.00926.x. [88] Yamao K, Ohashi K, Nakamura T, et al. Efficacy of peroral pancreatoscopy in the diagnosis of pancreatic diseases[J]. Gastrointest Endosc, 2003, 57(2): 205-209. DOI: 10.1067/mge.2003.72. [89] Arnelo U, Siiki A, Swahn F, et al. Single-operator pancreatoscopy is helpful in the evaluation of suspected intraductal papillary mucinous neoplasms (IPMN)[J]. Pancreatology, 2014, 14(6): 510-514. DOI: 10.1016/j.pan.2014.08.007. [90] Trindade AJ, Benias PC, Kurupathi P, et al. Digital pancreatoscopy in the evaluation of main duct intraductal papillary mucinous neoplasm: a multicenter study[J]. Endoscopy, 2018, 50(11): 1095-1098. DOI: 10.1055/a-0596-7374. [91] Nagayoshi Y, Aso T, Ohtsuka T, et al. Peroral pancreatoscopy using the SpyGlass system for the assessment of intraductal papillary mucinous neoplasm of the pancreas[J]. J Hepatobiliary Pancreat Sci, 2014, 21(6): 410-417. DOI: 10.1002/jhbp.44. [92] Parbhu SK, Siddiqui AA, Murphy M, et al. Efficacy, safety, and outcomes of endoscopic retrograde cholangiopancreatography with per-oral pancreatoscopy: a multicenter experience[J]. J Clin Gastroenterol, 2017, 51(10): e101-e105. DOI: 10.1097/MCG.0000000000000796. [93] de Jong DM, Stassen PMC, Groot Koerkamp B, et al. The role of pancreatoscopy in the diagnostic work-up of intraductal papillary mucinous neoplasms: a systematic review and meta-analysis[J]. Endoscopy, 2023, 55(1): 25-35. DOI: 10.1055/a-1869-0180. [94] Vehvilainen S, Fagerstrom N, Valente R, et al. Single-operator peroral pancreatoscopy in the preoperative diagnostics of suspected main duct intraductal papillary mucinous neoplasms: efficacy and novel insights on complications[J]. Surg Endosc, 2022. DOI: 10.1007/s00464-022-09156-3. [95] Scheiman JM, Hwang JH, Moayyedi P. American gastroenterological association technical review on the diagnosis and management of asymptomatic neoplastic pancreatic cysts[J]. Gastroenterology, 2015, 148(4): 824-848 e22. DOI: 10.1053/j.gastro.2015.01.014. [96] Griffin JF, Page AJ, Samaha GJ, et al. Patients with a resected pancreatic mucinous cystic neoplasm have a better prognosis than patients with an intraductal papillary mucinous neoplasm: a large single institution series[J]. Pancreatology, 2017, 17(3): 490-496. DOI: 10.1016/j.pan.2017.04.003. [97] Egawa S, Takeda K, Fukuyama S, et al. Clinicopathological aspects of small pancreatic cancer[J]. Pancreas, 2004, 28(3): 235-240. DOI: 10.1097/00006676-200404000-00004. [98] Ishikawa O, Ohigashi H, Imaoka S, et al. Minute carcinoma of the pancreas measuring 1 cm or less in diameter-collective review of Japanese case reports[J]. Hepatogastroenterology, 1999, 46(25): 8-15. [99] Crippa S, Fernandez-Del Castillo C, Salvia R, et al. Mucin-producing neoplasms of the pancreas: an analysis of distinguishing clinical and epidemiologic characteristics[J]. Clin Gastroenterol Hepatol, 2010, 8(2): 213-219. DOI: 10.1016/j.cgh.2009.10.001. [100] Oyama H, Tada M, Takagi K, et al. Long-term risk of malignancy in branch-duct intraductal papillary mucinous neoplasms[J]. Gastroenterology, 2020, 158(1): 226-237. DOI: 10.1053/j.gastro.2019.08.032. [101] Li Y, Zhu Z, Peng L, et al. The pathological features and prognoses of intraductal papillary mucinous neoplasm and mucinous cystic neoplasm after surgical resection: a single institution series[J]. World J Surg Oncol, 2020, 18(1): 287. DOI: 10.1186/s12957-020-02063-8. [102] Nilsson LN, Keane MG, Shamali A, et al. Nature and management of pancreatic mucinous cystic neoplasm (MCN): a systematic review of the literature[J]. Pancreatology, 2016, 16(6): 1028-1036. DOI: 10.1016/j.pan.2016.09.011. [103] Jais B, Rebours V, Malleo G, et al. Serous cystic neoplasm of the pancreas: a multinational study of 2622 patients under the auspices of the International Association of Pancreatology and European Pancreatic Club (European study group on cystic tumors of the pancreas)[J]. Gut, 2016, 65(2): 305-312. DOI: 10.1136/gutjnl-2015-309638. [104] Reid MD, Choi HJ, Memis B, et al. Serous neoplasms of the pancreas: a clinicopathologic analysis of 193 cases and literature review with new insights on macrocystic and solid variants and critical reappraisal of so-called 'serous cystadenocarcinoma'[J]. Am J Surg Pathol, 2015, 39(12): 1597-1610. DOI: 10.1097/PAS.0000000000000559. [105] Salom F, Piedra W, Burgos H. Tumor growth rate of pancreatic serous cystadenomas: endosonographic follow-up with volume measurement to predict cyst enlargement[J]. Pancreatology, 2019, 19(1): 122-126. DOI: 10.1016/j.pan.2018.11.007. [106] Liu H, Cui Y, Shao J, et al. The diagnostic role of CT, MRI/MRCP, PET/CT, EUS and DWI in the differentiation of benign and malignant IPMN: a meta-analysis[J]. Clin Imaging, 2021, 72183-72193. DOI: 10.1016/j.clinimag.2020.11.018. [107] Sultana A, Jackson R, Tim G, et al. What is the best way to identify malignant transformation within pancreatic IPMN: a systematic review and Meta-analyses[J]. Clin Transl Gastroenterol, 2015, 6(12): 130. DOI: 10.1038/ctg.2015.60. [108] Huynh T, Ali K, Vyas S, et al. Comparison of imaging modalities for measuring the diameter of intraductal papillary mucinous neoplasms of the pancreas[J]. Pancreatology, 2020, 20(3): 448-453. DOI: 10.1016/j.pan.2020.02.013. [109] Ippolito D, Maino C, Pecorelli A, et al. Incidental pancreatic cystic lesions: comparison between CT with model-based algorithm and MRI[J]. Radiography (Lond), 2021, 27(2): 554-560. DOI: 10.1016/j.radi.2020.11.016. [110] Boos J, Brook A, Chingkoe CM, et al. MDCT vs. MRI for incidental pancreatic cysts: measurement variability and impact on clinical management[J]. Abdom Radiol (NY), 2017, 42(2): 521-530. DOI: 10.1007/s00261-016-0883-8. [111] Boraschi P, Tarantini G, Donati F, et al. Side-branch intraductal papillary mucinous neoplasms of the pancreas: outcome of MR imaging surveillance over a 10 years follow-up[J]. Eur J Radiol Open, 2020, 7100250. DOI: 10.1016/j.ejro.2020.100250. [112] Vullierme MP, Gregory J, Rebours V, et al. MRI is useful to suggest and exclude malignancy in mucinous cystic neoplasms of the pancreas[J]. Eur Radiol, 2022, 32(2): 1297-1307. DOI: 10.1007/s00330-021-08091-6. [113] Lee JE, Choi SY, Min JH, et al. Determining malignant potential of intraductal papillary mucinous neoplasm of the pancreas: CT versus MRI by using revised 2017 international consensus guidelines[J]. Radiology, 2019, 293(1): 134-143. DOI: 10.1148/radiol.2019190144. [114] Layne KA, Dargan PI, Archer JRH, et al. Gadolinium deposition and the potential for toxicological sequelae- a literature review of issues surrounding gadolinium-based contrast agents[J]. Br J Clin Pharmacol, 2018, 84(11): 2522-2534. DOI: 10.1111/bcp.13718. [115] Nougaret S, Reinhold C, Chong J, et al. Incidental pancreatic cysts: natural history and diagnostic accuracy of a limited serial pancreatic cyst MRI protocol[J]. Eur Radiol, 2014, 24(5): 1020-1029. DOI: 10.1007/s00330-014-3112-2. [116] Macari M, Lee T, Kim S, et al. Is gadolinium necessary for MRI follow-up evaluation of cystic lesions in the pancreas? Preliminary results[J]. AJR Am J Roentgenol, 2009, 192(1): 159-164. DOI: 10.2214/AJR.08.1068. [117] Zhong N, Zhang L, Takahashi N, et al. Histologic and imaging features of mural nodules in mucinous pancreatic cysts[J]. Clin Gastroenterol Hepatol, 2012, 10(2): 192-198. DOI: 10.1016/j.cgh.2011.09.029. [118] Das A, Wells CD, Nguyen CC. Incidental cystic neoplasms of pancreas: what is the optimal interval of imaging surveillance?[J]. Am J Gastroenterol, 2008, 103(7): 1657-1662. DOI: 10.1111/j.1572-0241.2008.01893.x. [119] Han Y, Lee H, Kang JS, et al. Progression of pancreatic branch duct intraductal papillary mucinous neoplasm associates with cyst size[J]. Gastroenterology, 2018, 154(3): 576-584. DOI: 10.1053/j.gastro.2017.10.013. [120] Kim KW, Park SH, Pyo J, et al. Imaging features to distinguish malignant and benign branch-duct type intraductal papillary mucinous neoplasms of the pancreas: a meta-analysis[J]. Ann Surg, 2014, 259(1): 72-81. DOI: 10.1097/SLA.0b013e31829385f7. [121] Kwong WT, Lawson RD, Hunt G, et al. Rapid growth rates of suspected pancreatic cyst branch duct intraductal papillary mucinous neoplasms predict malignancy[J]. Dig Dis Sci, 2015, 60(9): 2800-2806. DOI: 10.1007/s10620-015-3679-8. [122] Kolb JM, Argiriadi P, Lee K, et al. Higher growth rate of branch duct intraductal papillary mucinous neoplasms associates with worrisome features[J]. Clin Gastroenterol Hepatol, 2018, 16(9): 1481-1487. DOI: 10.1016/j.cgh.2018.02.050. [123] Kang MJ, Jang JY, Kim SJ, et al. Cyst growth rate predicts malignancy in patients with branch duct intraductal papillary mucinous neoplasms[J]. Clin Gastroenterol Hepatol, 2011, 9(1): 87-93. DOI: 10.1016/j.cgh.2010.09.008. [124] Zhao W, Liu S, Cong L, et al. Imaging features for predicting high-grade dysplasia or malignancy in branch duct type intraductal papillary mucinous neoplasm of the pancreas: a systematic review and Meta-analysis[J]. Ann Surg Oncol, 2021. DOI: 10.1245/s10434-021-10662-2. [125] Yamazaki T, Tomoda T, Kato H, et al. Risk factors for the development of high-risk stigmata in branch-duct intraductal papillary mucinous neoplasms[J]. Intern Med, 2021, 60(20): 3205-3211. DOI: 10.2169/internalmedicine.7168-21. [126] Del Chiaro M, Beckman R, Ateeb Z, et al. Main duct dilatation is the best predictor of high-grade dysplasia or invasion in intraductal papillary mucinous neoplasms of the pancreas[J]. Ann Surg, 2020, 272(6): 1118-1124. DOI: 10.1097/SLA.0000000000003174. [127] Sun L, Wang Y, Jiang F, et al. Prevalence of pancreatic cystic lesions detected by magnetic resonance imaging in the Chinese population[J]. J Gastroenterol Hepatol, 2019, 34(9): 1656-1662. DOI: 10.1111/jgh.14658. DOI:10.3760/cma.j.cn321463-20221209-00573 |
|
来自: 新用户19973098 > 《待分类》