分享

数学学习方法【五】

 龙溪舟子 2012-12-28
1、数列中的数学思想学习方法
在数列综合问题中蕴含着许我重要的数学思想,如归纳思想、函数思想、方程思想、递推思想、化归思想、分类讨论思想,在这些思想的指导下产生许多解决数列问题的方法,让学生充分理解和掌握这些思想和方法,对提高解决数列综合问题的能力很为重要。

  一. 归纳思想

  通过对命题在特殊情况下的考察与探索,发现并归纳出一般性的结论,再运用数学的方法对结论进行证明,这种归纳思想形成了解决数列问题的一种重要方法;观察、归纳、猜想、证明。

  例1. 设是数列的前n项和,且,数列的通项公式为,将数列的公共项按它们在原数列中的先后顺序排成一个新数列,求

  分析:由,得,直接求出它们的公共项比较困难,可列举它们开始的若干项进行观察,发现规律后再进行证明。
2、高考数学复习:集合与映射专题复习指导学习方法
一、集合与简易逻辑

  复习导引:这部分高考题一般以选择题与填空题出现。多数题并不是以集合内容为载体,只是用了集合的表示方法和简单的交、并、补运算。这部分题其内容的载体涉及到函数、三角函数、不等式、排列组合等知识。复习这一部分特别请读者注意第1题,阐述了如何审题,第3、5题的思考方法。简易逻辑部分应把目光集中到“充要条件”上。

  1.设集合M={1,2,3,4,5,6},S1、S2、…Sk都是M的含两个元素的子集,且满足:对任意的Si={ai,bi},Sj={aj,bj},(i≠j,i、j∈{1,2,3,…k})都有min{-,-}≠min{-,-}(min{x,y}表示两个数x、y中的较小者)。则k的最大值是( )

  A.10 B. 11

  C. 12 D. 13

  分析:审题是解题的源头,数学审题训练是对数学语言不断加深理解的过程。以本题为例min{-,-}≠{-,-}如何解决?我们不妨把抽象问题具体化!

  如Si={1,2},Sj={2,3}那么min{-,2}为-,min{-,-}为-,Si是Sj符合题目要求的两个集合。若Sj={2,4}则与Si={2,4}按题目要求应是同一个集合。

  题意弄清楚了,便有{1,2},{2,4},{1,3},{2,6},{1,2},{3,6},{2,3},{4,6}按题目要求是4个集合。M是6个元素构成的集合,含有2个元素组成的集合是C62=15个,去掉4个,满足条件的集合有11个,故选B。

  注:把抽象问题具体化是理解数学语言,准确抓住题意的捷径。

  2.设I为全集,S1、S2、S3是I的三个非空子集,且S1∪S2∪S3=I,则下面论断正确的是( )

  (A)CIS1∩(S2∪S3)=

  (B)S1(CIS2∩CIS3)

  (C)CIS1∩CIS2∩CIS3=

  (D)S1(CIS2∪CIS3)

  分析:这个问题涉及到集合的“交”、“并”、“补”运算。我们在复习集合部分时,应让同学掌握如下的定律:

  摩根公式

  CIA∩CIB=CI(A∪B)

  CIA∪CIB=CI(A∩B)

  这样,选项C中:

  CIS1∩CIS2∩CIS3

  =CI(S1∪S2∪S3)

  由已知

  S1∪S2∪S3=I

  即CI(S1∪S2∪S3)=CI=

  而上面的定律并不是复习中硬加上的,这个定律是教材练习一道习题的引申。所以,高考复习源于教材,高于教材。

  这道题的解决,也可用特殊值法,如可设S1={1,2},S2={1,3},S3={1,4}问题也不难解决。

  3.是正实数,设S={|f(x)=cos[(x+])是奇函数},若对每个实数a,S∩(a,a+1)的元素不超过2个,且有a使S∩(a,a+1)含2个元素,则的取值范围是 。

  解:由f(x)=cos[(x+)]是奇函数,可得cosx·cos=0,cosx不恒为0,

  ∴cos=0,=k+-,k∈Z

  又>0,∴=-(k+-)

  (a,a+1)的区间长度为1,在此区间内有且仅有两个角, 两个角之差为:-(k1+k2)

  不妨设k≥0,k∈Z:

  两个相邻角之差为-<1,>。

  若在区间(a,a+1)内仅有二角,那么-≥1,≤2,∴<≤2。

  注:这是集合与三角函数综合题。

  4.设集合A={(x,y)|y≥-|x-2|},B={(x,y)|y≤-|x|+b},A∩B≠,

  (1)b的取值范围是 ;

  (2)若(x,y)∈A∩B且x+2y的最大值为9,则b的值是 。

  解:用图形分别表示集合A、B。

  -

  -

  -

  B:y≤-|x|+b

  从观察图形,易知

  b≥1,A∩B≠;(2)直线l方程为x+2y-2=0

  直线x+2y=9平行于l,

  其截距为-

  ∴b=-

  5.集合A={x|-<0},B={x ||x -b|<a},若“a=1”是“A∩B≠”的充分条件, 则b的取值范围是(  )

  A.-2≤b<0 B.0

  C.-3

  分析A={x|-1

  A、B区间长度均为2。

  我们从反面考虑,若A∩B≠

  此时,b+1≤-1或b-1≥1

  即b≤-2或b≥2。

  b≤-2或b≥2为b不能取值的范围,所以应排除A、B、C,选D。

  注:本题是以集合为基础的充要条件,其难点并不是充要条件,而是对参数b的处理。本题的解法意在从A∩B≠出发,类似于不等量关系,考虑等量关系使问题简化,再用排除法。

  6.函数f:{1,2,3}→{1,2,3}满足f(f(x))=f(x),则这样的函数个数共有

  (A)1个 (B)4个

  (C)8个 (D)10个

  解:根据对应关系定义,从象的个数出发去思考。

  (1)函数集合有一个象,如象为1,

  这时f(x)=1,x=1,2,3

  f[f(x)]=f(1)=1=f(x)

  写成对应形式{1,2,3}f {1}

  若f(x)=2,x=1,2,3有{1,2,3}f {2}

  同理{1,2,3}f {3}

  以上共有3个函数。

  (2)函数集合有2个元素

  如函数集合为{1,2}

  有{1,3}f {1},{2}f {2}

  这时f(1)=1,f[f(1)]=f(1)

  f(3)=1,f[f(3)]=f(1)=f(3)

  f(2)=1,f[f(2)]=f(2)

  有两个函数。

  同理 函数集合为{1,3},{2,3}各有2个函数

  综上有6个函数

  (3)函数集合有三个元素{1,2,3}

  只有f(1)=1,f(2)=2,f(3)=3

  ∴有一个函数,f(x)=x

  ∴综上(1)、(2)、(3)共有10个函数,故选D。
3、高考数学备考:立体几何重在建立空间概念学习方法
立体几何是高中数学中比较容易的一部分,高考中所占分值在20分以上,拿分应该不成问题。从目前复习情况来看,一部分考生学不好的原因大致有三个:一是基础知识不牢固;二是没有建立立体感和空间概念;三是表述不规范。

  -勤看课本多积累

  重视课本作用。立体几何课本中的例题、习题除了具有紧扣教材、难度适中、方法典型等特点外,还有不少定理是以例题或习题形式出现的,所以要使用好课本,熟悉课本。归纳常用方法,如证明若干点共线的基本方法是证明这些点是某两个面的公共点,又如求异面直线所成角,总是先平移成交角,而平移往往用三角形中位线或平行四边形的性质,再如找二面角的平面角时,常用三垂线定理或其逆定理。

  要用图形、文字、符号三种形式表达概念、定理、公式,要及时不断地复习前面学过的内容。这是因为《立体几何》的内容前后联系紧密,前面内容是后面内容的根据,后面内容既巩固了前面的内容,又发展和推广了前面内容。要学会用图(画图、分解图、变换图)帮助解决问题;要掌握求各种角、距离的基本方法和推理证明的基本方法———分析法、综合法、反证法。

  多积累。注意平面几何和立体几何概念的区别与联系,如:空间的垂直未必相交;正三棱锥不仅要底面是正三角形,还要顶点在底面上的射影是底面三角形的中心;三棱锥顶点在底面上的射影是底面三角形的外心、内心、垂心的条件各是什么等问题。记住一些特殊图形的线面关系和有关量。如:正方体中对角线与侧面对角线异面时,它们互相垂直;正四面体相对棱相互垂直;直角四面体的三个侧面面积的平方和等于底面面积的平方等等;若能记住它,将提高解题速度,并且使考生对问题的理解更加快捷。

  -提高空间想像力

  从认识平面图形到认识立体图形是一次飞跃,要有一个过程。有的同学自制一些空间几何模型并反复观察,这有益于建立空间观念,是个好办法。有的同学有空就对一些立体图形进行观察、揣摩,并且判断其中的线线、线面、面面位置关系,探索各种角、各种垂线作法,这对于建立空间观念也是好方法。

  建立空间观念要做到:

  重视看图能力的培养:对于一个几何体,可从不同的角度去观察,可以是俯视、仰视、侧视、斜视,体会不同的感觉,以开拓空间视野,培养空间感。

  加强画图能力的培养:掌握基本图形的画法;如异面直线的几种画法、二面角的几种画法等等;对线面的位置关系,所成的角,所有的定理、公理都要画出其图形,而且要画出具有较强的立体感,除此之外,还要体会到用语言叙述的图形,画哪一个面在水平面上,产生的视觉完全不同,往往从一个方向上看不清的图形,从另方向上可能一目了然。

  加强认图能力的培养:对立体几何题,既要由复杂的几何图形体看出基本图形,如点、线、面的位置关系;又要从点、线、面的位置关系想到复杂的几何图形,既要看到所画出的图形,又要想到未画出的部分。能实现这一些,可使有些问题一眼看穿。

  此外,多用图表示概念和定理,多在头脑中“证明”定理和构造定理的“图”,对于建立空间观念也是很有帮助的。

  -表述书写规范化

  高考中还十分重视解题过程表述的正确与严谨。同学们对“作”、“证”、“算”三个环节往往头轻脚重,对图形构成交代不清楚,造成逻辑上错误,对需要严格论证的往往没有表达出来,只算结果。这些在复习中都应该引起注意。在传统的逻辑推理方法中的基本步骤是:“一作(作辅助线),二证明(如证明直线与平面所成的角),三求(求解角或距离等)”;在用向量代数法时,必须按照“一建系(建立空间直角坐标系),二求点的坐标,三求向量的坐标,四运用向量公式求解”;如在证明线面垂直时,证明线线垂直时,容易只证明与平面内一条直线垂直就下结论,这里应强调证明两条相交直线,缺一不可;用空间向量解决问题时,需要建立坐标系,一定要说清楚;用三垂线定理作二面角的平面角时,一定得点明斜线在平面上射影;书写解题过程的最后都必须写结题语。在解题中,要书写规范,如用平行四边形ABCD表示平面时,可以写成平面AC,但不可以把平面两字省略掉;要写出解题根据,不论对于计算题还是证明题都应该如此,不能想当然或全凭直观;对于文字证明题,要写已知和求证,要画图;用定理时,必须把题目满足定理的条件逐一交代清楚,自己心中有数而不把它写出来是不行的。

  -培养两种意识

  特殊化意识。许多线面关系的问题要特别注意它们的特殊位置关系,在一些计算问题中,一般位置(图形)和特殊位置(图形)的答案是不变的,从特殊中寻找快捷的解题思路。要培养这种意识,以提高解题速度。有时,由特殊图形的关系可引出一般在关系。

  运动的观点。平移不改变角的大小,在立体几何中,所有角的求解都可做平行线(平移)来解决,这样可将不相交的线的夹角转化为相交线的夹角;直线不能移动,但其方向向量可以按需要任意平移。
4、名师支招:高考文科数学巧拿高分学习方法
高中数学难度大、抽象性强、运算量大。即使上课听懂,做作业也不是很顺利,或作业的错误比自己预料的多,很多同学真切地体会到“一听就懂、一看就会、一做就错”并非是耸人听闻的戏言。而高三文科班的学生对数学更是“无限复出有限回报”。如何摆脱困境,不如借鉴一线教师给大家总结的以下方法——

  -调适心态从容应对

  文科同学就数学学习而言确实是“弱势群体”。这部分同学必须调整好心态,用全面和长远的眼光看问题:尺有所短,寸有所长。不要和那些理科好的同学比,以己之短比人之长,越比越没有信心,有些同学由此形成很大的精神负担,甚至出现心理问题。其实,这是没有必要的。就目前的高考数学试卷而言,文科的要求比理科低得多,没有什么可怕的。

  部分同学由于特别在意数学成绩,考试前过度紧张,以致本来会做的题目做不对或不全对,几次不及格会影响学习数学的信心、兴趣,少数同学会厌学或对数学产生恐惧感———这是不应该的。其实,每次考试只要做对你会做的题,不失误或少失误,你就成功了。分数的高低不能完全说明问题,关键要看你在同类文科生中的相对位置。有什么好担心的呢!因此,我们忠告:充满信心,从容应对。

  -改进学法提高效率

  上数学课首先要听懂老师课堂所讲内容,遇有不懂或不全懂的内容,要做出记号,课后通过自己思考或与同学讨论或问老师,争取弄懂。听课时要适当做笔记,主要记老师补充的内容和课堂小节,书上的内容可以不记,以便集中精力听讲。课堂上还要尽可能多动手做练习,因为听懂到会做之间还有一段距离,做题后在脑子的印象比较深刻,容易记忆和长久保存,否则,学得快忘得也快。课后先复习再作业。复习时要简单回顾一节课的内容,注意重点、难点,总结解题方法,记住相关结论。作业要一气呵成,不要一边做作业一边翻书、翻笔记,那样的作业质量不高,就像一个誊写工,大脑没有多深的痕迹留下。
5、指导:数学高考复习别小看课本题目学习方法
高考第一阶段的复习已经进行了三个多月,在基础知识的复习过程中,我们要注意什么问题呢?

  首先数学知识是解决问题的基础,但如果储存在头脑中的知识是零散的,知识间没有建立起本质的联系或某种联系建立得不够完善,那么这种认知结构就会限制学生提取或检索与问题有关的知识,导致数学知识不能发挥有效的作用。所以注重知识形成和发展的过程,揭示其蕴涵的丰富的数学思想方法,能加深对数学知识间关系的理解,帮助整合知识结构,逐步建立起一个条理化、有序化、网络化的认知体系,在解题活动中能迅速激活有关的数学知识。

  在此过程中,要用好课本,充分发挥教材中例题的典型作用。一定要克服“眼高手低”的毛病,在没有扎实抓好基础知识和基本训练之前就去攻难题、搞综合提高,肯定不会有好的效果。事实上高考数学试卷中有相当多的试题是课本上基本题目的直接引用或稍作变形而得来的。

  数学能力的提高离不开做题,但决定复习效果的关键因素不是题目的数量,而在于解题的质量和处理水平,比如上题,本来是数列问题,利用函数的思想并结合数列的特点,可以用二次函数求最值的方法解决,也可以用变量分离的方法解决。解数学题要着重研究解题的思维过程,弄清基本数学知识和基本数学思想对解题的意义和作用,研究运用不同的思维方法解决同一数学问题的多条途径,在分析解决问题的过程中既构建知识的横向联系,又养成多角度思考问题的习惯。

  最后要注意总结数学知识体系中的基本概念与基本方法,明确基本概念与基本方法对深化知识结构,对知识的理解等数学活动的指导作用。比如例2是平时的基本训练题,而它所涉及的二次函数的性质,数形结合的思想,利用函数单调性的概念,将问题转化为不等式的问题,继而用变量分离的方法解决问题,这些正是例1所要考察的内容,是同学们必须牢固掌握的基本概念与基本方法。

  希望同学们能经常对自己的解题过程进行反思,例如:

  1.该问题在求解过程中用了哪些基础知识和思想方法,这些基础知识和思想方法我感到熟悉吗?

  2.题目的条件我用完了吗?在求解过程中还可能存在哪些问题?

  3.该问题还有没有较为简捷地求解途径,如何实施它?

  4.通过该问题的求解我得到了什么?我有什么感悟?

  5.该问题能进行推广吗?在复习过程中,如果你能多问自己几个为什么,用数学思想指导知识、方法的灵活运用,可以使我们运算简捷、推理机敏,也是提高数学能力的必由之路。
 
6、集合与映射专题复习指导学习方法
   7.命题“对任意的x∈R,x3-x2+10”的否定是

   (A)不存在x∈R,x3-x2+10

   (B)存在x∈R,x3-x2+10

   (C)存在x∈R,x3-x2+1>0

   (D)对任意的x∈R,x3-x2+1>0

   解:对原命题的否命题的表述是,存在x0∈R,x03-x02+1>0成立,故选C。

   8. 对于向量,-、-、-和实数,下列命题中真命题是

   A 若-·■,则-=0或-=0

   B 若-=-,则λ=0或-=0

   C 若-2=-2,则-=-或-=--

   D 若-·■=-·■,则-=-

   解:这个题的考查点是向量数量积的定义与运算律,其根本点是-·■=|-|·|-|cos而非-·■=|-|·|-|,向量数量积运算不同于数与式的运算。选B。

   9.若数列{an}满足-=p(p为正常数,n∈N*),则称{an}为“等方比数列”。

   甲:数列{an}是等方比数列;

   乙:数列{an}是等比数列,则( )

   A.甲是乙的充分条件但不是必要条件

   B.甲是乙的必要条件但不是充分条件

   C.甲是乙的充要条件

   D.甲既不是乙的充分条件也不是乙的必要条件

   分析 用反例,a1=-1,an=1,(n≥2)

 7、三角函数专题热点复习指导学习方法
  6. 已知函数f(x)=--sin2x+sinxcosx

  (Ⅰ)求f(-)的值;

  (Ⅱ)设α∈(0,π),f(-)=---,sinα的值。

  解:(Ⅰ)化简f(x),f(x)=-cos2x+-sin2x--

  =sin(2x+-)--

  f(-)=sin---=0

  解:(Ⅱ)f(-)=sin(α+-)--

  =---,

  ∴sin(α+-)=-

  -sinα+-cosα=-

  sinα+-cosα=-

  -cosα=--sinα

  两边平方整理关于sinα的二次方程:

  16sin2α-4sinα-11=0

  ∵α∈(0,π)

  ∴sinα=-

  注:在三角函数的求值、化简及研究三角函数的性质中,公式αsinα+bcosα=-sin(α+φ),tanφ=-ba,起着重要的作用。

  (二)三角函数的图象与性质

  复习导引:这一部分是高考的重点内容。三角函数的研究内容与方法既具有一般函数性质,又有其特殊的性质,周期性突显出来,如第3、9题,从图象角度审视,轴对称、中心对称、成为拟题的载体,如第4、5、6、11题。

  1. 设函数f(x) =-cos2ωx+sinωxcosωx+α(其中ω>0,α∈R),且f(x)的图象在y轴右侧的第一个高点的横坐标为-。

  (Ⅰ)求ω的值;

  (Ⅱ)如果f(x)在区间[--,-]上的最小值为-,求α的值。

  解:(Ⅰ)f(x)=-cos2ωx+sinωx·cosωx+α

  =--+-sin2ωx+α

  =-sin2ωx+-cos2ωx+α+-

  =sin(2ωx+-)+α+-

  2ω·■+-=-,ω=-

  (Ⅱ)f(x)=sin(x+-)+α+-

  --≤x≤-

  0≤x+-≤-

  fmin(x)=f(-)=--+α+-=-

  ∴α=-+-

  2. 如图,函数y=2sin(πx+φ),(x∈R),(其中0≤φ≤-)的图象与y轴交于点(0,1)。

  (Ⅰ)求φ的值;

  (Ⅱ)设p是图象上的最高点,M、N是图象与x轴的交点,求-与-的夹角。

  解:(Ⅰ)f(0)=2sinφ=1,sinφ=-

  0≤φ≤- ∴φ=-

  (Ⅱ)f(x)=2sin(πx+-)

  ∵P为最高点

  ∴πx+-=-,x=-,Q(-,0)

  f(x)周期T=-=2,-=1,|MN|=1,|NQ|=-,|PQ|=2,tanα=-

  cos2α=-=-

  ∴-与-的夹角是arccos-

  3. 已知函数f(x)=Asin2(ωx+φ),(A>0,ω>0,0<φ<-),且y=f(x)的最大值为2,其图象相邻两对称轴的距离为2,并过点(1,2)。

  (1)求φ;

  (2)计算f(1)+f(2)+…+f(2008)。

  解:(Ⅰ)f(x)=Asin2(ωx+φ)=---cos(2ωx+2φ)

  fmax(x)=--(--)=2 ∴A=2

  由已知,T=4=-,ω=-

  f(x)=1-cos(-x+2φ)

  f(1)=1-cos(-+2φ)=2

  ∴sin2φ=1 0<φ<-

  ∴φ=-

  ∴f(x)=sin(-x)+1

  (Ⅱ)f(1)=sin-+1=2

  f(2)=sinπ+1=1

  f(3)=sin-+1=0

  f(4)=sin2π+1=1

  又f(n)是以4为周期的函数

  -=502

  ∴f(1)+f(2)+…+f(2008)=502×4=2008

  4. 设函数f(x)=sin(2x+φ)(-π<φ<0),y=f(x)图象的一条对称轴是直线x=-。

  (Ⅰ)求φ;

  (Ⅱ)求函数y=f(x)的单调增区间;

  (Ⅲ)证明直线5x-2y+c=0与函数y=f(x)的图象不相切。

  解:(Ⅰ)∵x=-为f(x)对称轴,

  ∴sin(2×■+φ)=±1.

  ∴sin(-+φ)=±1,-π<φ<0

  ∴-+φ=--,φ=--

  ∴f(x)=sin(2x--)

  解:(Ⅱ)f(x)的单调递增区间

  2kπ--≤2x--≤2kπ+-,k∈Z

  kπ+-≤x≤kπ+-,k∈Z

  证明:(Ⅲ)5x-2y+c=0,斜率k=-

  f(x)=sin(2x--)

  k'=f'(x)=2cos(2x--)

  |k'|≤2

  ∵k≠|k'| ∴不能相切

  注:本题阐述了三角函数图象轴对称求解析式的方法。


8、三角函数专题热点复习指导学习方法
8. 若0

  A. sinx<-x

  B. sinx>-x

  C. sinx<-x2

  D. sinx>-x2

  解:用特殊值法,令x=-,sin-=-,-g-=-,-g-=-

  排除A、B、C,选D。

  本题也可用g(x)=sinx--x,H(x)=sinx--x2

  用求导的方法对g(x)、H(x)进行分析。

  注:本题不等式左边是三角函数(属超越函数),右边是代数函数,用初等方法无法解决。

  9. 已知函数y=sinx(ωx+-)+sin(ωx--)-2cos2-,x∈R(其中ω>0)。

  (1)求函数f(x)的值域;

  (2)若对任意的a∈R,函数y=f(x),x∈(a,a+π]的图像与直线y=-1有且仅有两个不同的交点,试确定ω的值(不必证明),并求函数y=f(x),x∈R的单调区间。

  解:(1)y=sinx(ωx+-)+sin(ωx--)-2cos2-

  =-sinωx-cosωx-1

  =2sin(ωx--)-1

  ∴-3f(x)1

  分析:(2)把f(x)的图像作一个简单的类比,相当于y=sinx在(0,2π]内在直线y=0交点的个数是两个,且仅是两个。

  而(α,α+π]是长度为π的左开右闭区间,

  ∴f(x)的周期为π

  ∴-=π→ω=2

  ∴f(x)=2sin(2x--)-1

  其单调增区间为2kπ--2x--2kπ+-

  kπ--xkπ+-

  注:本题(2)是由图像的特征确定周期,类比可使问题简化。

  10. 将函数y=sinωx(ω>0)的图像按向量α=(--,0)平移,平移后的图像如图所示,则平移后的图像所对应函数的解析式是( )

  A. y=sin(x+-)

  B. y=sin(x--)

  C. y=sin(2x+-)

  D. y=sin(2x--)

  解:y=sinωx按-=(--,0)平移后,得y=sinω(x+-)

  sinω(-+-)=-1

  由图像ω(-+-)=-,ω=2

  ∴y=sin(2x+-),选C

  11. 设函数f(x)=-·(-+-),其中向量-=(sinx,-cosx),-=(sinx,-3cosx),-=(-cosx,sinx),x∈R

  (Ⅰ)求函数f(x)的最大值和最小值的正周期;

  (Ⅱ)将函数f(x)的图像按向量-平移,使平移后得到的图像关于坐标原点成中心对称,求长度最小的-。

  解:(Ⅰ)由已知f(x)=(sinx,-cosx)·(sinx-cosx,-3cosx+sinx)

  =cos2x-sin2x+2=-cos(2x+-)+2

  fmax(x)=-+2,T=π

  (Ⅱ)∵平移后图像关于坐标原点成中心对称,图象先向下平移2个单位

  φ(x)=cos[2(x+φ)+-],φ(0)=0

  ∴cos(2φ+-)=0,2φ+-=kπ+-

  φ=-+-,当k=0,|φ|最小

  ∴φ=-

  -=(--,-2)

  (三)解三角形

  复习导引:正、余弘定理的重要作用是“边”与“内角的函数”的转化,如第4、5、6题。第2、3题提供了两条重要的思考方法。在三角形面积问题中最常用的公式是SVABC=-bcsinA,如第7、8题。在解三角形时,随时注意内角的变化范围,在第2、6题中都有体现。

  1. 2002年在北京召开的数学家大会,会标是以我国古代数学家赵爽的弦图为基础设计的。弦图是由四个全等直角三角形与一个小正方形拼成的一个大正方形。如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为θ,那么cos2θ的值等于______________。

  分析:考查图形,由四个直角三角形全等,在同一个直角三角形内,两条直角边的差是1,又斜边是5,由此勾3,股4,弦5。

  ∴sinθ=-,cosθ=-,∴cos2θ=-

  2. 如果VA1B1C1的三个内角的余弦值分别等于VA2B2C2的三个内角的正弦值,则( )

  A. VA1B1C1和VA2B2C2都是锐角三角形

  B. VA1B1C1和VA2B2C2都是钝角三角形

  C. VA1B1C1是钝角三角形,VA2B2C2是锐角三角形

  D. VA1B1C1是锐角三角形,VA2B2C2是钝角三角形

  解:VA1B1C1三个内角的余弦值均大于0,VA1B1C1为锐角三角形,假定VA2B2C2也为锐角三角形,

  sinA2=cosA1=sin(--A1)→A2=--A1,

  同理B2=--B1,C2=--C1

  A2+B2+C2=--(A1+B1+C1)=-(矛盾)

  ∴VA2B2C2为钝角三角形,选D

  3. 设P是VABC所在平面上一点,SVABC表示VABC的面积,λ1=-,λ2=-,λ3=- ,定义p(P)=(λ1,λ2,λ3),若G是VABC的重点,f(Q)=(-,-,-),则( )

  A. 点Q在VGAB内

  B. 点Q在VGBC内

  C. 点Q在VGCA内

  D. 点Q与点G重合

  解:假定VABC为正三角形,则f(G)=(-,-,-)

  -=-,点Q在过G点平行于边AC的直线lAC上,-=->-,点Q又在平行于边BC的直线lBC上。lAC与lBC交于点Q,Q在VGAB内,选A

  注:用“特殊三角形”,令VABC是正三角形,简化思考。

  4.在平面直角坐标系xOy中,已知△ABC顶点A(-4,0)和C(4,0),顶点B在椭圆-+-=1上,则-=_____________

  解:由椭圆方程 a'=5,b'=3,c'=4

  ∴A、C为椭圆焦点,B在椭圆上:

  由正弦定理-=-=-=-,(a、b、c为△ABC三条边)

  5 设a、b、c分别为VABC的三内角A、B、C所对的边,则a2=b(b+c)是A=2B的( )

  (A)充要条件

  (B)充分而不必要条件

  (C)必要而不充分条件

  (D)既不充分也不必要条件

  答案:A

  6.设锐角三角形ABC的内角,A,B,C的对边分别为a,b,c,a=2bsinA

  (1)求B的大小;

  (2)求cosA+sinC的取值范围。

  解:(1)a=2bsinA,sinA=2sinBgsinA

  ∴sinB=-,0°

  (2)cosA+sinC=cosA+sin[180°-(A+30°)]

  =cosA+sin(A+30°)

  =-sinA+-cosA

  =-(sinA+-cosA)

  =-sin(A+60°)

  ∵A+B>90°

  ∴A>60°,∴120°

  ∴-<-sin(A+60°)<-

  注:解三角形,A,B,C是三角内角,充分注意角的变化范围。

  7.如图,已知VABC边长为l的正三角形,M、N分别是边AB、AC上的点,线段MN经过VABC的中心G,设∠MGC=α(-α-)

  (1)试将VAGM、VAGN的面积(分别记为S1与S2)表示为α的函数

  (2)求y=-+-的最大值与最小值

  解:(Ⅰ)在VAGM中,由正弦定理:
 
9、平面向量解题要点与应用学习方法
平面向量这一章内容本身兼有代数、几何双重特点,而又完全有别于学生多年来数学学习中所接触到的代数运算和几何证明,因此,多数同学对本章问题感到既抓不住重点,也找不到规律,因此很困惑,甚者发憷。比较近几年数学高考试卷中的平面向量题目,不难发现其中的几个突出变化: 1.相关知识点覆盖面越来越全;2.与其他章节知识的交汇越来越多样,也越来越深入;3.题目所在档次有所提高,拿到相关分数的难度越来越大。如此,就增加了学生备考的难度。在顺利完成基本概念和基本运算复习的基础上,我给学生提出了“三大线索,两大技巧”的复习重点。三大线索即:向量形式、坐标形式、几何意义。两大技巧为:抓“基底”、升次数。下面就以向量与其他章节的综合为主线,和同学们一起回顾一下主要内容及其应用。

  一、基本计算类:

  1.已知-=(1,2),-=(-3,2),若(k-+-)⊥(--3-)则k=_______,

  若(k-+-)//(--3-),则k=____

  答案:19,--。公式基本应用,无需解释。

  2.已知向量-=(cos,sin),向量-=(2-,-1)则|3---|的最大值为 解:(3a-b)2=(3cosθ-2-, 3sinθ+1) (3cosθ-2-, 3sinθ+1)

  =(3cosθ-2-) 2+(3sinθ+1)2

  =9cos2θ-12-cosθ+8+9sin2θ+1+6sinθ

  =18+6sinθ-12-cosθ

  ≤18+-=18+18=36

  ∴|3a-b|max=6

  点评:本题虽然是道小的综合题,但是向量中的升次技巧还是十分突出的,“见模平方”已是很多老师介绍给同学的一大法宝。不过升次的另外一种途径,就是同时点乘向量。

  二、向量与三角知识综合:

  3.设-=(1+cos,sin),-=(1-cos,sin),-=(1,0),∈(0,),∈(,2)-,-的夹角为θ1,-,-的夹角为θ2,且θ1-θ2=-,求sin-的值。

  解:-·■=1+cos

  -·■=1-cos

  |-|2=2+2cos=4cos2- |-|2=2-2cos=4sin2- |-|=1

  ∵-∈(0,- ) -∈(-,)

  ∴|-|=2cos- |-|=2sin-

  又-·■=|-| |-|cosθ1

  ∴1+cos=2cos-cosθ1

  2cos2-=2cos-·cosθ1

  ∴cosθ1=cos- ∴θ1=-

  同理-·■=|-| |-|cosθ2

  ∴sin-=cosθ2

  ∴cos(---)=cosθ2

  ∴---=θ2

  ∴θ1-θ2=-+-=-

  ∴-=--

  ∴sin-=--

  三、向量与函数、不等式知识综合:

  4.已知平面向量-=(-,1), -=(-,-),若存在不同时为零的实数k,t,使-=-+(t2-3)-,-=-k-+t-,且-⊥-.(1)试求函数关系式k=f(t);(2)求使f(t)>0的t的取值范围.

  解:(1)由题知-·■=0,|-|2=4 |-|2=1

  -·■=-k-2+t-·■+t(t3-3)-2-k(t2-3)-·■=-4k+t(t2-3)=0

  ∴k=-(t3-3t)即f(t)=-(t3-3t)

  (2)f’(t)=-(3t2-3)=-(t2-1)

  -

  令f(t)=0 ∴t1=0 t2=-- t3=-

  由图可知

  t∈(--,0)∪(-,+∞)

  四、用向量的知识解决三角形四边形中的问题。(与平面几何的交汇是近几年考试的热点)

  温馨提示:据以下问题,同学们可以归纳一些常见结论,如与内心、外心、垂心、重心、中线、角分线、高线、共线、垂直等相关的结论。

  5.O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足 -=-+(-+-)·∈(0,+∞)。则P的轨迹一定通过△ABC的( )

  A.外心 B.内心

  C.重心 D.垂心

  答案:B

  6.设平面内有四个互异的点A,B,C,D,已知(---)与(-+--2-)的内积等于零,则△ABC的形状为( )

  (A)直角三角形

  (B)等腰三角形

  (C)等腰直角三角形

  (D)等边三角形

  答案:B

  解:-+--2-=(---)+(---)=-+-

  又---=-

  ∴-·(-+-)=0

  ∴等腰三角形

  7. 已知-A=-,-C=-,-C=-且满足(---)·■=0(>0),则△ABC为(

  )

  A.等边三角形 B.等腰三角形

  C.直角三角形D.不确定

  解: 式子的含义就是角分线与高线合一。故选B。

  8.若平面四边形ABCD满足-+-=-,(---)·■=0,则该四边形一定是

  A. 直角梯形 B. 矩形

  C. 菱形 D. 正方形

  答案为C。第一个条件告诉我们这是平行四边形,而第二个条件则说明对角线互相垂直。

  五、向量与解析几何的综合:

  9.设F为抛物线y2=4x的焦点,A,B,C为该抛物线上三点,若-+-+-=0,

  解:由-+-+-=0可知,F为三角形ABC的重心,故xg=-,而|-|+|-|+|-|=xA+xB+xC+3-故原式值为6。

  10.已知A、B、D三点不在一条直线上,且A(-2,0),B(2,0)|-|=2,-=-(-+-) 求E点的轨迹方程;

  解:(1)设E(x,y),-=-+- ,则四边形ABCD为平行四边形,而-=-(-+-)E为AC的中点

  ∴OE为△ABD的中位线

  ∴|-|=-|-|=1

  ∴E点的轨迹方程是:x2+y2=1(y≠0)

  点评:本题正是关注了向量几何意义得以实现运算简化。

  11.设椭圆方程为x2+-=1,过点M(0,1)的直线l交椭圆于点A、B,O是坐标原点,点P满足-=-(-+-),点N的坐标为(-,-),当l绕点M旋转时,求:

  (1)动点P的轨迹方程;

  (2)|-|的最小值与最大值.

  (1)解:设点P的坐标为(x,y),因A(x1,y1)、B(x2,y2) 在椭圆上,所以x12+-=1④ x22+-=1 ⑤

  ④―⑤得x12-x22+-(y12-y22)=0,所以(x1-x2)(x1+x2)+-(y1-y2)(y1+y2)=0

  当x1≠x2时,有x1+x2+-(y1+y2)·■=0 ⑥

  -

  将⑦代入⑥并整理得4x2+y2-y=0 ⑧

  当x1=x2时,点A、B的坐标为(0,2)、(0,-2),这时点P的坐标为(0,0)

  也满足⑧,所以点P的轨迹方程为-+-=1

  (2)解:由点P的轨迹方程知x2≤-,即--≤x≤-。

  所以|-|2=(x--)2+(y--)2=(x--)2+--4x2=-3(x+-)2+-……10分

  故当x=-,|-|取得最小值,最小值为-;当x=--时,|-|取得最大值,

  最大值为-。

  点评:本题突出向量的坐标运算与解析几何求轨迹方法的结合,以及二次函数求最值问题。
10、用向量方法解决轨迹方程学习方法
二、运用两非零向量共线的充要条件求轨迹方程。

  例1:已知定点A(2,0),点P在曲线x2+y2=1(x≠1)上运动,∠AOP的平分线交PA于Q,其中O为原点,求点Q的轨迹方程。

  解: 设Q(x,y),P(x1,y1)

  -=(x-2,y)

  -=( x1-x,y1-y)

  又∵-=-=-

  ∴ -=2-

  即:(x-2,y)=2(x1-x,y1-y)

  -

  解得:-

  代入x12+y12=1(x≠1)有:

  -(3x-2)2+-y2=1(x≠-)

  即所求轨迹方程为:

  (x--)2+y2=-(x≠-)

  【点拨】用该方法解此类问题简单明了,若将Q视为线段AP的定比分点,运用定比分点公式解本题,则计算过程既繁琐又容易出错。

  例2:设过点P(x,y)的直线分别与x轴的正半轴和y轴的正半轴交于A、B两点,点Q与点P关于y轴对称,O为坐标原点,若-=2-,且-·■=1,求P点的轨迹方程。

  解:-=2-

  ∴P分有向线段-所成的比为2

  由P(x,y)可得B(0,3y),A(-x,0)

  ∴- =(--x,3y)

  ∵Q与P关于y轴对称, ∴Q(-x,y),-且 =(-x,y)

  ∴由-·■=1可得-x2+3y2=1(x>0,y>0)

  即所求点P的轨迹方程为-x2+3y2=1(x>0,y>0)

  【点拨】求动点轨迹方程时应注意它的完备性与纯粹性。化简过程破坏了方程的同解性,要注意补上遗漏的点或者挖去多余的点。

  三、运用两非零向量垂直的充要条件是求轨迹方程。

  例1:如图,过定点A(a,b)任意作相互垂直的直线l1与l2,且l1与x轴相交于M点,l2与y轴相交于N点,求线段MN中点P的轨迹方程。

  解:设P(x,y),则M(2x,0),N(0,2y)

  -=(2x-a ,-b)

  -=(-a,2y-b)

  由-⊥-知-·■=0

  ∴(2x-a)(-a)+(-b)(2y-b)=0

  即所求点P的轨迹方程为2ax+2by=a2+b2

  【点拨】用勾股定理解本题,运算繁琐,若用斜率解本题,又必须分类讨论,用向量的方法避免了上述两种方法的缺陷,使解题优化。

  例2:过抛物线y2=8x的焦点F的直线交抛物线于A,B两点,过原点O作OM⊥AB,垂足M,求点M的轨迹方程。

  解:设M(x,y), OM⊥AB,F(2,0)

  ∵-·■=0且-=(x,y),-=(2-x,-y)

  ∴x(2-x)-y2=0,即:x2+y2-2x=0

  ∴点M的轨迹方程为x2+y2-2x=0


11、高考数学:寒假数学复习需过“五关”学习方法
寒假是复习过程的中转站,更应当作考前的加油站,在这黄金时间内,不仅可以进行知识和方法自行拓展,也可以进行心理和生理的自我调整,斗志昂扬迎接新的挑战。

  高考是教学的指挥棒,为了更好的落实二期课改精神,高考命题坚持以能力立意的原则,平时的复习中,是在老师的指导下进行“齐步走”,任务也较重,应接不暇。而寒假就可以自主支配,加强对相关知识的拓展,能力问题的钻研,使“长”的更“长”,“短”的不“短”。

  方法的不妥有时会阻碍人的进步。寒假期间可以进行大胆的尝试,寻求适合自己的最佳学习方法和考试技巧。特别注意劳逸结合,养精蓄锐,保持有效的生活和学习规律,不打乱已经形成的“生物钟”。开学时,既保证了知识上心中有效,又保证了身心上精力充沛。为此我向同学们提一些建议,供参考。

  一、过好“完成任务关”

  根据一贯的规律,各个学校会布置一定数量的寒假作业,作为复习工作的延续和补充,也为同学们巩固和提高提供了练习的素材。并且,开学的时候要检查任务完成的质量和效果。所以,必须完成老师指定的任务,才能心安理得,才能有进一步去干其他事情的时间和心情。在完成指定任务时,要有计划有安排,宁愿适当提前完成,不可延迟,每年都有同学安排不合理,把老师布置的任务放在最后几天做,谁知突然有了特殊事情,虽然后来快马加鞭,挑灯夜战,但是任务还是难以完成。

  二、过好“查漏补缺关”

  相当一部分同学考试时分数不高,不少是会做的题做错,特别是基础题。究其原因有的是知识方面的,有的是属能力方面的,也有是因情绪波动而引起的。因此,要加强对以往错题的研究,找到错误的原因,对易错点进行列举、归纳、对症下药、治标治本,使犯过的错误不再重犯,会做的题目不会做错。

  其实,不少同学知道查漏补缺,但是每天的练习很多,完成都很吃力,那有时间去查漏补缺,只有听之任之了。现在机会来了,应该抓紧时间进行疑难突破。

  三、过好“回归课本关”

  不论高考怎样考,基础知识的灵活运用是必不可少的。一般情况下每种题型(选择、填充、解答)的前几题都是基础题的,有的只是一些概念的直接应用,有的是一些知识点的简单组合,而这些只要基础知识到位,一般不易失分的。寒假中,若能把每一章后面的复习小结好好的读一读,其中有对每个知识点的讲解、有相关的例题、有注意点,这往往是考生平时所忽略的,不妨每天读一、两章的复习小结,对于基础知识的把握是很有好处的。

  例如,我们在复习过程中,让同学们做下面的两道题:

  (1).函数y=f(x)的图象与直线x=a的交点个数为(A)(A)至多一个 (B)至少一个(C)一个(D)二个(2)下列函数中,是幂函数的为————(把正确的题号都填上)



这个问题不仅可以特殊情形的研究向一般的情形去猜想,更应该从结论的形式上去联想,这里可以锻炼思维的灵活性和深刻性,真正提高能力和素质,探究能力的训练应该有逐步深入的过程,开始知识和方法的类比、特殊到一般的推广等,进一步到提出问题并探究和解决问题,还可以以科研论文的形式训练研究能力。当然,我们在平时的复习中,也应逐步养成研究的习惯,通过把经典问题引申、推广等,进行研究性训练,并学会从反面去思考问题,把问题分析透彻,解决彻底,真正提高思维水平,扩大解题效益。
 
12、高考数学复习:抓紧时间过关斩将学习方法
高考第一阶段的复习已经进行了一个学期,这一阶段一直在强调基础知识的复习。三月份开始,就会有学校陆续进入专题复习环节。高考如同一场没有硝烟的战争,复习就是过关斩将一路厮杀,在这样一个承上启下的时间段里,数学复习要过哪几道关口呢?

  -回归课本关

  不论高考怎样考,基础知识的灵活运用是必不可少的。一般情况下每种题型(选择、填充、解答)的前几题都是基础题,有的只是一些概念的直接应用,有的是一些知识点的简单组合,而这些只要基础知识到位,一般不易失分。把每一章后面的复习小结好好读一读,其中有对知识点的讲解、有相关例题,这往往是考生平时所忽略的,不妨每天读一两章的复习小结,对于基础知识的把握很有好处。

  在此过程中,要用好课本,充分发挥教材中例题的典型作用。一定要克服“眼高手低”的毛病,在没有扎实抓好基础知识和基本训练之前就去攻难题、搞综合提高,肯定不会有好的效果。事实上高考数学试卷中有相当多的试题是课本上基本题目的直接引用或稍作变形而得来的。

  系统地掌握每一章节的概念、性质、法则、公式、定理、公理及典型例题,这是高考复习必须做好的第一步,高考题“源于课本,高于课本”,这是一条不变的真理,所以复习时万万不能远离课本,必要时还应对一些课本内容进行深入探究、合理延伸和拓展。

  -提升解题质量关

  数学能力的提高离不开做题,但决定复习效果的关键因素不是题目的数量,而在于解题的质量和处理水平。解数学题要着重研究解题的思维过程,弄清基本数学知识和基本数学思想对解题的意义和作用,研究运用不同的思维方法解决同一数学问题的多条途径,在分析解决问题的过程中既构建知识的横向联系,又养成多角度思考问题的习惯。

  自2006年开始,我省高考全部实行网上阅卷,这对考生的答题规范提出更高要求,填空题要求:数值准确、形式规范、表达式(数)最简;解答题要求:语言精练、字迹工整、完整规范。考生答题时常见问题:如立体几何论证中的“跳步”,代数论证中的“以图代证”,应用问题缺少必要文字说明,忽视分类讨论,或讨论遗漏或重复等等。这些都是学生的“弱点”,自然也是考试时的“失分点”,平时学习中,应该引起足够的重视。

  “差之毫厘,谬以千里”,“会而不对,对而不全”,计算能力偏弱,计算合理性不够,这些在考试时有发生,对此平时学习过程中应该加强对计算能力的培养;学会主动寻求合理、简捷运算途径;平时训练应树立“题不在多,做精则行”的理念。

  -查漏补缺关

  相当一部分同学之所以考试分数不高,是因为一些会做的题做错了,特别是基础题。究其原因有的是知识方面的,有的是属能力方面的,也有是因情绪波动而引起的。因此,要加强对以往错题的研究,找到错误的原因,对易错点进行列举、归纳、对症下药、治标治本,使犯过的错误不再重犯,会做的题目不会做错。其实,不少同学知道查漏补缺,但是每天的练习很多,完成都很吃力,哪有时间去查漏补缺,只有听之任之了。如何从缝隙中挤出时间?就需要心中有大局,头脑清晰,忙而不乱。

  -培养综合能力关

  函数与方程的思想、数形结合的思想、化归与转化思想、分类与整合的思想、特殊与一般的思想、有限与无限的思想等,这些都是高中数学的精髓,但这些“思想”有时只能意会,教学中老师往往也只能是“渗透”。只有在“实践”中实现自我领悟,在反思中重构自己的经验,形成自己的行动策略和方式,掌握只能意会的知识才能变成可能。

  对于综合能力的培养,坚持整体着眼,局部入手,重点突破,逐步深化原则,如很棘手的解析几何,函数、数列、不等式等综合问题,可采取分散难点逐个击破的做法。

  高考数学考查学生的能力,势必设计一定的创新题,以增加试题的区分度,平时学习应注重数学建模、直觉思维能力、合情推理能力、策略创造能力的培养。

  同时,某些压轴题往往要求考生具备多角度、多方向地去探索、去发现、去研究、去创新的能力,对学生的个性品质也提出更高要求。的确压轴题得高分难,但得基础分的机会还是有的。遗憾的是不少考生不能透过现象看本质,对新问题不能仔细阅读题意,深刻理解内涵,不能迅速将数学概念迁移到不同情景,显得万般无奈,只好全然放弃。

  -研读考纲关

  开学后,一年一度的《考试大纲》也将与考生见面,它反映了命题的方向,研读考纲,不但可以从宏观上掌握考试内容,做到复习不超纲;而且可以从微观上细心推敲对众多考点的不同要求,分清哪些内容只要一般理解,哪些内容应重点掌握,哪些知识又要求灵活运用和综合运用。复习中,要结合课本,对照《考试大纲》把知识点从整体上再理一遍,既有横向串联,又有纵向并联。

  总之,经过第一轮复习,学生们对所学知识有了较全面系统的复习,但综合运用的能力还比较薄弱,有些概念、公式和典型解题方法可能也遗忘了。因此在今后的复习中还应回顾课本、学习笔记和纠错本,浓缩所学知识,熟练掌握解题方法,加快解题速度,缩短遗忘周期,达到复习巩固提高的效果。

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多