目录简介编辑概述氨基酸代谢(amino acid metabolism) 人和动物由食物引入的蛋白质或是组成机体细胞的蛋白质和在细胞内合成的蛋白质,都必须先在酶的参与下加水分解后才进行代谢。植物与微生物的营养类型与动物不同,一般并不直接利用蛋白质作为营养物,水解。分解代谢过程中生成的氨,在不同动物体内可以以氨、尿素或尿酸等形式排出体外。某些氨基酸可以通过特殊代谢途径转变成其他含氮物质如嘌呤、嘧啶、卟啉、某些激素、色素、生物碱等。体内某些氨基酸在代谢过程中还可以相互转变。 但其细胞内的蛋白质在代谢时仍然需要先行分解氨基酸的分解代谢主要在肝脏中进行。 氨基酸的分解代谢一般是先脱去氨基,形成的碳骨架可以被氧化成CO2和H2O,产生ATP ,也可以为糖、脂肪酸的合成提供碳架。 脱氨基编辑可在体内大多数组织细胞中进行,主要在肝脏中进行 氧化脱氨基(1)、L—氨基酸氧化酶 有两类辅酶,E—FMN E—FAD(人和动物) 对下列a.a不起作用: Gly、β-羟氨酸(Ser、 Thr)、二羧a.a( Glu、 Asp)、二氨a.a (Lys、 Arg) 真核生物中,真正起作用的不是L-a.a氧化酶,而是谷氨酸脱氢酶。 (2)、D-氨基酸氧化酶 E-FAD (4)、D-Asp氧化酶E-FAD (5)、L-Glu脱氢酶 E-NAD+ E-NADP+ P220 反应式: 此酶是能使a.a直接脱去氨基的活力最强的酶,是一个结构很复杂的别构酶。在动、植、微生物体内都有。 ADP、GDP及某些a.a可激活此酶活性。 因此当ATP、GTP不足时,Glu的氧化脱氨会加速进行,有利于a.a分解供能(动物体内有10%的能量来自a.a氧化)。 非氧化脱氨基作用(大多数在微生物的中进行) ①还原脱氨基(严格无氧条件下) ②水解脱氨基 ③脱水脱氨基 ④脱巯基脱氨基 ⑤氧化-还原脱氨基 两个氨基酸互相发生氧化还原反应,生成有机酸、酮酸、氨。 ⑥脱酰胺基作用 天冬酰胺酶:天冬酰胺 + H2O → 天冬氨酸 + NH3 谷胺酰胺酶、天冬酰胺酶广泛存在于动植物和微生物中 转氨基作用不同的转氨酶催化不同的转氨反应。 动物组织中,Asp转氨酶的活性最大。在大多数细胞中含量高,Asp是合成尿素时氮的供体,通过转氨作用解决氨的去向。 联合脱氨基机体借助联合脱氨基作用可以迅速脱去氨基 。 1、以谷氨酸脱氢酶为中心的联合脱氨基作用 P226 图16-4通过嘌呤核苷酸循环的联合脱氨基做用 骨骼肌、心肌、肝脏、脑都是以嘌呤核苷酸循环的方式为主 脱羧作用编辑生物体内大部分a.a可进行脱羧作用,生成相应的一级胺。 a.a脱羧酶专一性很强,每一种a.a都有一种脱羧酶,辅酶都是磷酸吡哆醛。 a.a脱羧反应广泛存在于动、植物和微生物中,有些产物具有重要生理功能,如脑组织中L-Glu脱羧生成r-氨基丁酸,是重要的神经介质。His脱羧生成组胺(又称组织胺),有降低血压的作用。Tyr脱羧生成酪胺,有升高血压的作用。 但大多数胺类对动物有毒,体内有胺氧化酶,能将胺氧化为醛和氨。 氨的去向编辑氨对生物机体有毒,特别是高等动物的脑对氨极敏感,血中1%的氨会引起中枢神经中毒,因此,脱去的氨必须排出体外。 氨的去向: (1)重新利用 合成a.a、核酸。 (2)贮存 Gln,Asn (3)排出体外 排氨动物:水生、海洋动物,以氨的形式排出。 排尿酸动物:鸟类、爬虫类,以尿酸形式排出。 排尿动物:以尿素形式排出。 氨的转运(肝外→肝脏) 1、Gln转运 Gln合成酶、Gln酶(在肝中分解Gln) Gln合成酶,催化Glu与氨结合,生成Gln。 Gln中性无毒,易透过细胞膜,是氨的主要运输形式。 Gln经血液进入肝中,经Gln酶分解,生成Glu和NH3。 2、丙氨酸转运(Glc-Ala循环) 肌肉可利用Ala将氨运至肝脏,这一过程称Glc-Ala循环。 肌肉运动产生大量的氨和丙酮酸,两者都要运回肝脏,而以Ala的形式运送,一举两得。 氨的排泄1、直接排氨 排氨动物将氨以Gln形式运至排泄部位,经Gln酶分解,直接释放NH3。游离的NH3借助扩散作用直接排除体外。 2、尿素的生成(尿素循环) 排尿素动物在肝脏中合成尿素的过程称尿素循环 尿素循环途径(鸟氨酸循环): 氨甲酰磷酸合酶I:存在于线粒体中,参与尿素的合成。 氨甲酰磷酸合酶II:存在于胞质中,参与尿嘧啶的合成。 N-乙酰Glu激活氨甲酰磷酸合酶I、II 鸟氨酸接受氨甲酰磷酸提供的氨甲酰基,生成瓜氨酸。 鸟氨酸转氨甲酰酶存在于线粒体中,需要Mg2+作为辅因子。 精氨琥珀酸 →精氨酸+ 延胡索素酸 此时Asp的氨基转移到Arg上。 来自Asp的碳架被保留下来,生成延胡索酸。延胡索素酸可以经苹果酸、草酰乙酸再生为天冬氨酸, 尿素形成后由血液运到肾脏随尿排除。 NH4+ + CO2 + 3ATP + Asp + 2H2O →尿素+ 2ADP + 2Pi + AMP + Ppi + 延胡索酸 形成一分子尿素可清除2分子氨及一分子CO2 , 消耗4个高能磷酸键。 联合脱-NH2合成尿素是解决-NH2去向的主要途径。 生成尿酸(见核苷酸代谢) AA去向编辑20种aa有三种去路 (1)氨基化还原成氨基酸。 (2)氧化成CO2和水(TCA)。 (3)生糖、生脂。 它们最后集中为5种物质进入TCA:乙酰CoA、α-酮戊二酸、琥珀酰CoA、延胡索酸、草酰乙酸。 氨基酸碳骨架进入TCA的途径 转变1(2)、Gly先转变成Ser,再由Ser转变成丙酮酸。 Gly与Ser的互变是极为灵活的,该反应也是Ser生物合成的重要途径。 (4)、Thr 有3条途径 ①转氨,生成β-巯基丙酮酸,再脱巯基,生成丙酮酸。 ②氧化成丙酮酸 ③加水分解成丙酮酸 转变2(2)、Tyr 产物:1个乙酰乙酰CoA(可转化成2个乙酰CoA。),1个延胡索酸,1个CO2 , (3)、Leu 产物:1个乙酰CoA,1个乙酰乙酰CoA,相当于3个乙酰CoA。 反应中先脱1个CO2 ,后又加1个CO2 ,C原子不变 。 (4)、Lys 产物:1个乙酰乙酰CoA,2个CO2 。 (5)、Trp P 产物:1个乙酰乙酰CoA,1个乙酰CoA,4个CO2 ,1个甲酸。 转变3Arg、His、Gln、Pro、Glu形成α-酮戊二酸的途径 (1)、Arg 产物:1分子Glu,1分子尿素 (2)、His 产物:1分子Glu,1分子NH3 ,1分子甲亚氨基 (3)、Gln 三条途径 ①.Gln酶: Gln + H2O → Glu + NH3 (4)、Pro 产物:Pro → Glu 琥珀酰CoA途径Met、Ile、Val转变成琥珀酰CoA (1)、Met 给出1个甲基,将-SH转给Ser(生成Cys),产生一个琥珀酰CoA (2)、Ile (3)、Val 草酰乙酸途径Asp和Asn可转变成草酰乙酸进入TAC,Asn先转变成Asp(Asn酶),Asp经转氨作用生成草酰乙酸. 延胡索酸途径两种编辑生酮氨基酸生糖氨基酸而Phe、Tyr是生酮兼生糖a.a。 氨基酸与“一碳基团”的代谢四氢叶酸是一碳基团的主要载体,分子上的N5和N10是结合一碳基团的位置,SAM是体内甲基的重要来源。
|
|