叮铃铃...... 高数第一堂课. 映射与函数,20多页,老师45分钟就讲完了,完全懵逼了,有木有~ 更有甚者,如果老师高估了学生的自学能力,而直接从数列的极限开始讲授,势必把学生一下子给带坑里去了。。。 从此,这个世界真的生无可恋,死亦无对证! 映射与函数还好办,毕竟这部分内容是高中接触过的. 能走进象牙塔,课后花点时间,理解这部分内容应该不存在智商的问题. 可是,到了数列的极限,绝大部分同学直接就晕了,开始严重怀疑自己的智商. 然后就各种爆粗口,你妹这么丑陋难懂的 那么,极限真有那么困难吗? 微积分诞生于17世纪70年代,不论是连续、微分、积分还是级数等,都不可避免地要和极限打交道. 那个年代的数学家是凭借直觉做数学的,逻辑上很难把极限讲清楚,受到很大的诟病. 这个 直观上这是容易理解的:
我们必须承认,上述说法不但含糊不清,而且容易产生误解. 如果只停留在这种感性认识上,任何有意义的深入讨论都将无法进行下去. 我们必须给出严格的数学定义. 但要从逻辑上把上述问题讲清楚,却是异常困难的. 一直到19世纪20年代Bolzano,Cauchy等人提出新的观点,而有 至此,微积分才算建立起无暇的逻辑基础. 定义:对于数列 是指,若对任意给定的 注记
禅语: 要把极限讲清楚,主从必须颠倒, 这个主从转变的思想,花了将近200年.
在学习极限时,上述晦涩难懂的定义是首先遇到的问题,而第二个难点在于,如何利用定义去证明数列的极限. 我们首先给出极限的如下等价定义. 其中(3)、(4)是我们今后常用的. 另外,(4)中的 k 是与 例:证明 一般思路:对任意给定的 证: 要使 只须 即 于是取 则当 另外,记住一些重要的数列极限,对大家今后的学习是大有裨益的. 对于数列极限(以及后面函数的极限),解释太多也无益处. 就像现在流行的鸡汤文,如果没有经历过,你是很难理解其中的所谓人生道义的. 同样的道理,没有经过大量长期而艰苦的训练,要理解极限简直就是 Mission impossible. (图片和部分文字源于网络) 不多说了,上视频! 孤帆远影碧空尽,唯见长江天际流. 极限之美,在悟!
|
|