文档介绍: 利用轴对称求最短距离问题 基本题引入:如图(1),要在公路道a上修建一个加油站,有A,B两人要去加油站加油。加油站修在公路道的什么地方,可使两人到加油站的总路程最短? 你可以在a上找几个点试一试,能发现什么规律? 思路分析:如图2,我们可以把公路a近似看成一条直线,问题就是要在a上找一点M,使AM与BM的和最小。设A′是A的对称点,本问题也就是要使A′M与BM的和最小。在连接A′B的线中,线段A′B最短。因此,线段A′B与直线a的交点C的位置即为所求。 如图3,为了证明点C的位置即为所求,我们不妨在直线a上另外任取一点N,连接AN、BN、A′N。 因为直线a是A,A′的对称轴,点M,N在a上,所以AM= A′M,AN= A′N。 ∴AM BM= A′M BM= A′B 在△A′BN中, ∵A′B<A′N BN ∴AM BM<AN BN 即AM BM最小。 点评:经过复习学生恍然大悟、面露微笑,不一会不少学生就利用轴对称知识将上一道中考题解决了。思路如下:②∵BC=9(定值),∴△PBC的周长最小,就是PB+PC最小.由题意可知,点C关于直线DE的对称点是点A,显然当P、A、B三点共线时PB+PA最小.此时DP=DE,PB+PA=AB.由∠ADF=∠FAE,∠DFA=∠ACB=90°,得△DAF∽△ABC. EF∥BC,得AE=BE=AB=,EF=.∴AF∶BC=AD∶AB,即6∶9=AD∶15.∴AD=10. Rt△ADF中,AD=10,AF=6,∴DF=8.∴DE=DF+FE=8+=.∴当x=时,△PBC的周长最小, y值略。 数学新课程标准告诉我们:教师要充分关注学生的学习过程,遵循学生认知规律,合理组织教学内容,建立科学的训练系统。使学生不仅获得数学基础知识、基本技能,更要获得数学思想和观念,形成良好的数学思维品质。同时每年的中考题也千变万化,为了提高学生的应对能力, |
|