分享

阿波罗尼斯圆的证明

 湖南衡阳县人 2017-01-20

阿波罗尼斯圆:一动点P与两定点A、B的距离之比等于定比m:n,则点P的轨迹,是以定比m:n内分和外分定线段的两个分点的连线为直径的圆。

这个轨迹最先由古希腊数学家阿波罗尼斯发现,故称阿氏圆。

这个定理的证明方法很多。下面是笔者的分析与证明,希望读者喜欢。

如图,P是平面上一动点,A、B是两定点,PA∶PB= m∶n ,M是AB的内分点(M在线段AB上),N是AB的外分点(N在AB的延长线上)且

AM∶MB=AN∶NB=m∶n,则P点的轨迹是以MN为直径的圆。

阿波罗尼斯圆的证明

下面先证明两个定理:

一、如图一,已知M是BC上一点,且AB∶AC=BM∶MC,

求证:AM平分∠BAC(三角形内角平分线定理的逆定理)

证明:过C点作CD∥AM交BA的延长线于D,则AB∶AD=BM∶MC

∵AB∶AC=BM∶MC,∴AB∶AD =AB∶AC,∴AC=AD,

∴∠D=∠3,∵CD∥AM,∴∠1=∠D,∠2=∠3,∴∠1=∠2,∴AM平分∠BAC。

阿波罗尼斯圆的证明

二、如图二,N是BC延长线上一点,BN∶CN=AB∶AC,求证:AN平分∠BAC的邻补角∠EAC

证明:∵CD∥AN交AB于D,则BN∶CN=AB∶AD,∵BN∶CN=AB∶AC,∴AB∶AD=AB∶AC,AD=AC,∴∠3=∠4,∵DC∥AN,∴∠1=∠3,∠2=∠4,∴∠1=∠2,∴AN平分∠BAC的邻补角∠EAC

有了上面的证明,阿波罗尼斯圆定理的证明就不难了,证明如下:

阿波罗尼斯圆的证明



连结PM、PN,∵M为AB的内分点, PA∶PB=AM∶MB =m∶n,∴PM平分∠APB

∵N为AB的外分点,AN∶BN=PA∶PB =m∶n,∴PN平分∠BPE,

∵∠APB+∠BPE=180o,又∠2=∠APB/2,∠3=∠BPE/2,

∴∠2+∠3=(∠APB+∠BPE)/2

即∠MPN=90o,∴动点P到MN的中点O的距离等于MN(定值)的一半(直角三角形斜边上的中线等于斜边的一半),点P的轨迹,是以定比m:n内分和外分定线段AB的两个分点的连线为直径的圆

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多